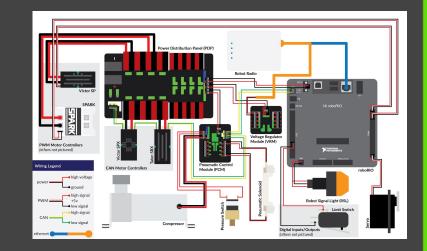


Citrus Circuits Fall Workshop Series Diagnosing Electrical Issues

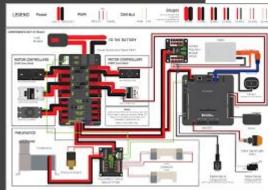
> by Rohan Nepomuceno

Introduction to Your Presentor


Rohan Nepomuceno

- Senior, Davis Senior High School
- Member of FRC 1678, 4th year member
- Hardware Electrical Lead, Citrus Service

FRC Control System Overview


• The basics of the current control system has been around since 2015 which receives updates yearly • The main systems that usually have the most issues are the power, signal, and pneumatic systems

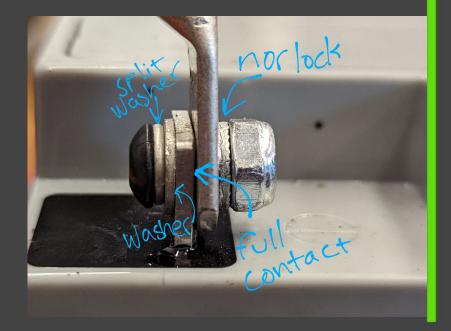
Power System

 Power system supplies all electronic power to the robot components
 All power comes from the battery

Battery

- Common problems with the battery

 Strained/damaged terminal connections
 Degrading battery cell health
- Signs of problem
 - Voltage drops
 - o brownouts

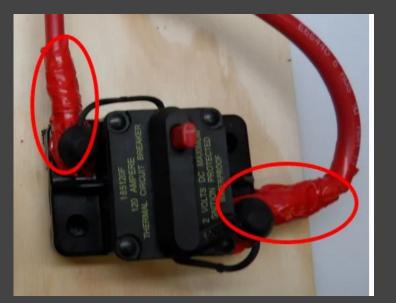


Battery

- Trickle charging- the practice of charging a battery equal to its discharge rate at full capacity
- Nord Lock Terminal Connections

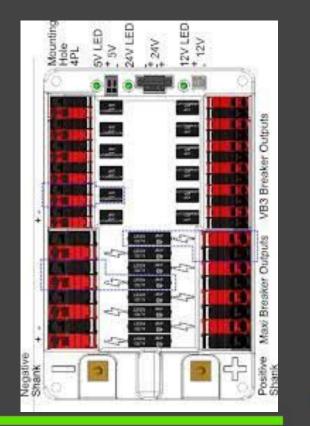
 Full contact

Main Breaker


• Common Problems: Connectivity • Signs of poor connection to the main breaker • Warm to the touch • Burn marks Voltage drop Complete loss of power

Main Breaker

• Insulation of the power terminals • The ones given do not cover enough to be safe • Switching power problems • Damaged hardware Replacement of Main breaker necessary



PDP

- Power distribution panel is a hotspot for electrical issues
- Common Problems

 Battery/Main breaker connections
 - Port/Gate connection
 - o CAN
 - Broken Fuses

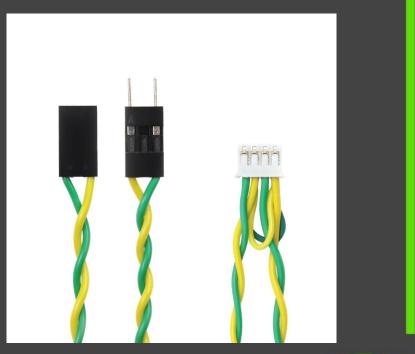
PDP

 Connectivity Always insulate any exposed wire • Understanding Port Layout • Once broken replacement is the best option

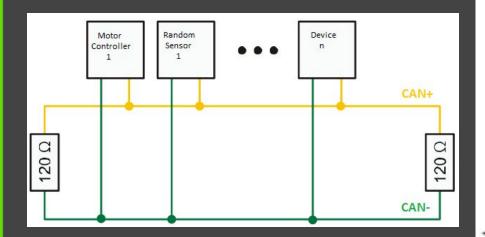
Fuses
 Feature not a bug

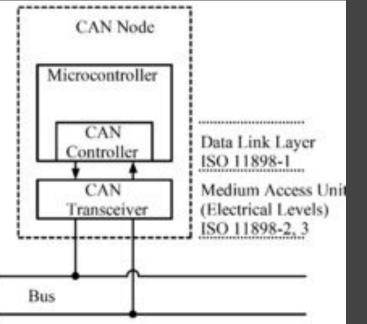
Power Distribution Hub

- Power Distribution Hub is an alternative to the PDP
- Common Problems


 Frayed Port
 Connections
 CAN

 - Broken Fuses




Control Area Network Nodes Receiver and Transmitter • Common Problems • Poor Connection o ID's • Shorting

CAN cont.

- No CAN Signal being received
 - Check connectivity between components
 - Check resistance between components
 Check connectivity to the robot frame

- No CAN Signal cont.
 Checking that there are ID's on the component being tested
 - Terminating resistor on PDP
 - lo Hardware Problem

 Fuzzy/ Inconsistent CAN • Temporary discontinuity Moving Part/Jostling around • EMF disruption • Electromagnetic Field run though coiled wired Avoiding large coils Increased Resistance

RoboRio

- The central processor of the robot
- Common Problems
 - o Power
 - o CAN
 - Port Connections
 - Processing

Table 2. NI roboRIO Input Voltage Brownout Behavior

Stage	Input Voltage Range	Behavior		
1	6.3 V to 6.8 V	The +6 V voltage rail starts to drop.		
2	4.5 V to 6.3 V	 The NI roboRIO enters a brownout fault condition and the following precautions are taken: User voltage rails become disabled. All PWM generation stops at the conclusion of the current cycle. GPIOs configured as outputs go to High-Z. Relay control outputs are driven low. CAN-based motor controllers become disabled. The following systems continue to function normally with valid data and communication: FPGA, processor, RAM, disk, and user code USB power and communication Radio, if powered by USB Ethernet CAN AI and AO I²C SPI RS-232 serial LED and RSL status lights Stage 2 continues until the input voltage rises to greater than 7.5 V or drops to less than 4.5 V. 		
3	Less than 4.5 V	All controller functions cease and the controller state is lost. This condition continues until the input voltage rises to greater than 4.65 V, at which point the controller starts the normal booting sequence. At startup, the controller remains in Stage 2 until the input voltage rises to greater than 7.5 V.		

RoboRIO Power

Input 7V-16V When the voltage drops to 4.5V - 6.8V RoboRIO enters brownout mode Polarity

RoboRio

Signs of poor port connections No power to sensors • No receiving of sinal • Check Voltage with a multimeter from the Voltage out to Ground Hot Glueing Connections in place

RoboRio

- Signal Lights of the RoboRIO
- Lag or dropping Code processes
 - Processing
 Problems
 Revived by
 external
 components

Color	State	Indication	
Off	Off	Power is outside valid input range.	
Green	Solid	Power is valid with no fault condition.	
Red	Solid	Fault condition detected. One or more user voltage rails ar in short-circuit or overcurrent condition.	
Red	Flashing	The input voltage is too high (greater than 16 V) and all outputs, including the RSL output, are disabled.	
Yellow	Solid	Brownout condition detected. The 6 V user rail and outputs are disabled.	

RoboRio Processors

• Canifier • Microprocessor that uses CAN FD USB port • Pi Pico • Microprocessor connected to MXP port

Radio

- The Communicator between the driver station and the Robot
- Common Problems
 - Power
 - Switch Ports

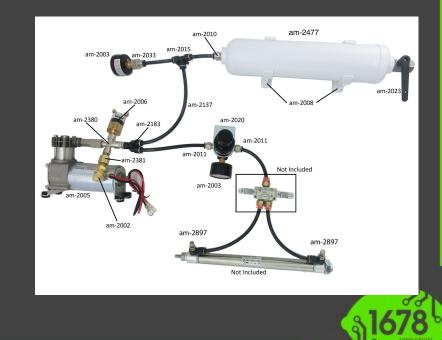
Radio

Power • Radio Power ■ 12V/2A -VRM • Barrel Jack power • RPM- more consistent • Switch Ports • Ethernet switch power Hot Glue Ethernet into place

Crimps and Connectors

• Anderson Crimps Power connections • Ferrule crimps • Component Gates Molex connectors • PWM/ Signal Wires • Lever Locks • Prototyping/Repair

Soldering


Great way to connect wires if done right • Common Problems • Poor connectivity Melted/Burned insolation • Sheer force snapping • Resistance Checks • Heat shrink protection

Pneumatics

• Controls the flow of air on the robot Common problems • Leaks Do not show up digitally • Power Pressure switch Solenoid power

Pneumatic Control Module

- The PCM controls all power for the pneumatic system
 Common Problems include the Output voltage to the solenoids
 - Single and DoubleCAN

Pressure Switch

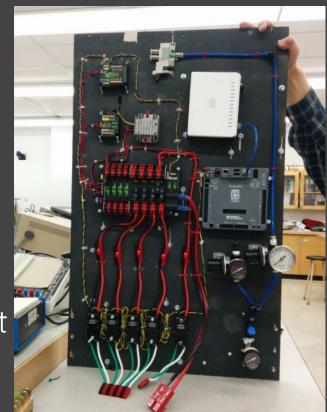
- The Pressure Switch detects the pressure
- Dipolar
- Specialized port
 Common problems

 Factory pressure
 Replacement/ Adjustment

Air Leaks

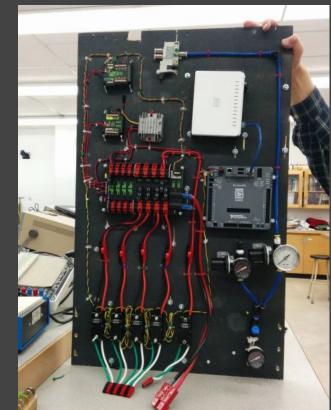
• Air leaks are undetectable digitally-Listening • Pressure Gauges Shifts ■ Show Pressure drops • Resulting from poor connection Metal Components • Puncture in tube Split and divide

Pneumatic Control Module


• Checking the output voltage setting on the PCM and input voltage to your solenoids • Signal Lights • None- not receiving power

3.3.1. STATUS LED Fault Table						
*LED Color	Strobe	Slow	Long			
Green	No Fault - Robot Enabled	No Fault - Robot Disabled	NA			
Orange	NA	Sticky Fault	NA			
Red	NA	No CAN Comm. OR Compressor Fault OR Solenoid Fault (Blinks Solenoid Index)	Compressor Fault			

A A A OTATIO LED Could Table

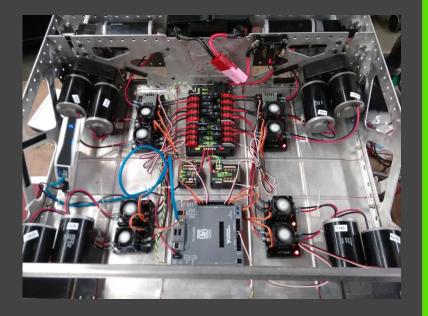

Organization

Organization

Organization • Wire Layering Power CAN Pneumatics • 90 Degree bends • Wire Tensioning • Kinetic Wiring

Sensors


- Sensors on the robot are fragile than other components
 - Beam breaks color sensors
- Often times the best solution to a nonfunctional sensor is to replace it


Expansion Boards

MXP Port of the RoboRio
Common replacement for the I2C port on the robot as it relieves the processing units of the RoboRio

Misc.

- Grounded frame
- Routine Electrical Checks
 Pull tests
 - Compressed Air
 - Resistance Checks
- Working with members of software
- Return Merchandise Authorization

Citrus Circuits Fall Workshop Series rohannepo@gmail.com

Questions?