
2020 Citrus Circuits

Electronic Scouting System Whitepaper

Written by Jackson A, Lucca B, David C, Carl C, Thomas D, Rayko F, Emily F, Logan H, Claire H,
Teo H, Adam H, Harry J, Ellie K, Kathy L, Emily L, Zatara N, Sophia P, Kevin R, Jake R, Nathan

S, Ethan T, Livy T, Kate U, Ludi W, Adam W, and Justin Y

September 6, 2020

Contents

1 Introduction 4
1.1 Bolded Terms . 4
1.2 Purpose of Whitepaper . 4
1.3 Why Scout . 4
1.4 History . 4
1.5 System Overview . 4
1.6 Subteam Structure . 5

1.6.1 Crews . 5
1.6.2 Scouting Leadership Team . 6

1.7 The Game . 6

2 Principles 7
2.1 Organizational Principles . 7

2.1.1 Team Culture About Scouting . 7
2.1.2 Subteam Culture . 7

2.1.2.1 Health . 7
2.1.2.2 Collaboration . 7
2.1.2.3 Leadership Opportunities . 8

2.2 Software Principles . 8
2.2.1 Purpose . 8
2.2.2 Prioritization . 8
2.2.3 Prioritization of Tasks . 8
2.2.4 Limiting Scope . 8
2.2.5 User Interface Optimization . 9

3 Processes 10
3.1 Scouting Leadership Public Meetings . 10
3.2 Subteam Procedures . 10

3.2.1 Importance of Documentation . 10
3.2.2 Meeting Summaries . 10
3.2.3 Meeting Leads . 10
3.2.4 Development . 10

3.2.4.1 Development of Prioritized Data Fields . 10
3.2.4.2 Task Management . 10

3.3 Testing Processes . 11
3.3.1 Reviews . 11
3.3.2 Tests . 11
3.3.3 Schema Changes . 11
3.3.4 Field Tests . 11
3.3.5 Daily Product Tests . 11

3.4 Competition Process . 11
3.4.1 Before Competition . 11
3.4.2 During Competition . 12
3.4.3 After Competition . 13

3.5 Offseason . 13
3.5.1 Offseason Training . 13

1

4 Product 14
4.1 Software . 14

4.1.1 Purpose of Our Software . 14
4.1.2 Visualization . 14

4.1.2.1 Picklist Editor . 14
4.1.2.2 Match Strategy Viewer . 15

4.1.3 Collection . 16
4.1.3.1 Match Collection . 16
4.1.3.2 Pit Collection . 17

4.1.4 Data Transfer . 17
4.1.5 Schema . 18
4.1.6 Server . 19

4.1.6.1 Local and Cloud Databases . 19
4.1.6.2 Communictaion with TBA . 19
4.1.6.3 Logging . 19

4.1.7 Computations . 19
4.1.7.1 QR Handling . 19
4.1.7.2 Consolidation and Objective TIM Calcs . 19
4.1.7.3 Inner Goals Regression . 20
4.1.7.4 Subjective Team Computations . 20
4.1.7.5 Pick Ability . 20
4.1.7.6 Predictions . 20
4.1.7.7 Functionality Without Internet . 21

4.2 Hardware . 21
4.2.1 Tablet Case . 21
4.2.2 Laptop Case . 22
4.2.3 Video System Case . 22

5 Analysis 24
5.1 Data Accuracy . 24

5.1.1 Overall Accuracy at LAN . 24
5.1.2 Number of Disagreements Within Consolidation . 25
5.1.3 Comparison of Consolidation Methods . 26
5.1.4 Data Accuracy with Fewer Scouts . 26
5.1.5 Takeaways . 27
5.1.6 Accuracy of Inner Goals Regression . 27

5.2 Strengths . 27
5.2.1 Prioritization and Limiting Scope . 27
5.2.2 Code Quality and Review Process . 27

5.2.2.1 Code Quality . 27
5.2.2.2 The Review Process and Knowledge Transfer . 28
5.2.2.3 Code Reusability . 28

5.2.3 Documentation . 28
5.2.4 Reliability of the Match Collection App . 28

5.3 Weaknesses . 28
5.3.1 Knowledge Transfer in Offseason and Build Season . 28

5.3.1.1 Software General . 28
5.3.1.2 Issues With Collaborative Learning . 28

5.3.2 Testing and Review Process Issues . 29
5.3.2.1 No End to End System . 29
5.3.2.2 Issues with Consistence of Tests . 29

5.3.3 Work Distribution . 29
5.3.4 Data Structure . 29
5.3.5 Lack of Milestones . 29
5.3.6 Insufficient User Feedback . 29

2

6 Future Improvements 31
6.1 Overview . 31
6.2 Offseason Education Revamp . 31
6.3 Improved Testing Procedures . 31
6.4 Improved Software Features . 31

7 Conclusion 33
7.1 Overall . 33
7.2 Utilization of Human Resources . 33
7.3 Resources . 33

7.3.1 2020 Scouting System Software . 33
7.3.2 Agile Software Development . 34
7.3.3 Past Whitepapers . 34
7.3.4 The Blue Alliance . 34
7.3.5 Fall Workshops . 34
7.3.6 Simbots Seminar Series: Scouting and Match Strategy . 34
7.3.7 Overview and Analysis of FIRST Stats . 34
7.3.8 Contact Us . 34

Glossary 35

3

Chapter 1

Introduction

1.1 Bolded Terms

Within this document there are bolded terms, which are defined within the glossary for your convenience. To
avoid confusion, please reference the glossary as bolded terms appear. The bolded terms are hyper-linked to their
respective definitions. Some common terms are defined here:

• Scouting System - The system that 1678 uses to collect, process, and visualize data in order to aid in match
strategy and picklist creation at competition. There are two apps that collect data: the Pit Collection app and
the Match Collection app. The data from these apps is processed by the Server, then displayed on the Viewer
app and the Picklist Editor.

• Software Scouting - A subteam of 1678 Citrus Circuits. The purpose of Software Scouting is to create the
most valuable software possible to aid in 1678’s competition picklist and match strategy creation.

1.2 Purpose of Whitepaper

The Scouting Whitepaper is a technical document that describes the electronic Scouting System used by FIRST
Robotics Competition (FRC) Team 1678: Citrus Circuits. The purpose of the 2020 Scouting Whitepaper is to share
our approach to developing the 2020 Scouting System and the effectiveness of that approach with other FRC teams.

1.3 Why Scout

Citrus Circuits develops an electronic scouting system to be as competitively successful as possible by gaining
insight to teams’ competitive capabilities. This allows us to develop successful match strategies and picklists that best
suit our strategic needs. By using electronic devices to collect, process, and visualize scouting data, the data can be
continuously updated and sent to users. This allows for more complex calculations and enables a wider range of data
visualization. Most importantly, it provides faster communication between components of the Scouting System.

1.4 History

Citrus Circuits has used a custom-built electronic scouting system since 2013. Every year since then, we have
drastically improved the Scouting System and the training we provide to new members. The evolution of the Scout-
ing System can be observed across the annual scouting whitepapers since 2013.

The resources available to us have also greatly increased each year. This year, Software Scouting has grown
to be the largest subteam on Citrus Circuits with 24 members.

1.5 System Overview

The Citrus Circuits Scouting System is used to collect, process, and visualize data about teams at FRC competi-
tions. Software Scouting develops five main software elements: the Match Collection app, the Pit Collection app,
the Match Strategy Viewer app (Viewer app for short), the Picklist Editor, and the Server.

At competition scouts use two collection apps: the Match Collection app and the Pit Collection app. Each app
contains two “modes” for users to input either objective or subjective data. The users of the two collection apps are
as follows:

4

https://www.firstinspires.org/robotics/frc
https://www.firstinspires.org/robotics/frc
https://www.citruscircuits.org/

• Objective scouts use the objective mode of the Match Collection app.

• Subjective scouts use the subjective mode of the Match Collection app.

• Objective pit scouts use the objective mode of the Pit Collection app.

• Subjective pit scouts use the subjective mode of the Pit Collection app.

Figure 1.1: Diagram of the Scouting System, with competition roles

As users enter data into collection apps, those apps send data to the Server, which uses that data to compute
various metrics of teams’ abilities. Those computed metrics are then sent to the Viewer app and the Picklist Editor,
which display data used for match strategy and picklist creation, respectively.

1.6 Subteam Structure

1.6.1 Crews
Software Scouting is divided into two crews: front-end and back-end. Front-end is responsible for the user-

facing software (e.g. the Match Collection app and the Picklist Editor spreadsheet). Back-end is responsible for
the Server, which manages the database, and handles computations. The two crews provide a crucial separation of
tasks in a large subteam and enable members to specialize in specific programming languages and concepts.

5

1.6.2 Scouting Leadership Team
The Scouting Leadership Team is a group of 6 veteran members within Software Scouting that helps with the

management and leadership of the subteam. Since Software Scouting has 24 members, the Scouting Leadership
Team was created to increase communication between the crews (and within the subteam as a whole), as well as
to help the subteam lead with management and leadership tasks for the large subteam. The Scouting Leadership
Team mainly helps with organizing discussions and prioritization of tasks.

1.7 The Game

Objective and subjective scouts collect data about robots that participate in the 2020 FRC game, Infinite
Recharge, at competitions. The following video gives a brief overview of the game: https://www.youtube.com/

watch?v=gmiYWTmFRVE.
The official rulebook for the Infinite Recharge is available at: https://firstfrc.blob.core.windows.net/frc2020/
Manual/2020FRCGameSeasonManual.pdf.

6

https://www.youtube.com/watch?v=gmiYWTmFRVE
https://www.youtube.com/watch?v=gmiYWTmFRVE
https://firstfrc.blob.core.windows.net/frc2020/Manual/2020FRCGameSeasonManual.pdf
https://firstfrc.blob.core.windows.net/frc2020/Manual/2020FRCGameSeasonManual.pdf

Chapter 2

Principles

2.1 Organizational Principles

2.1.1 Team Culture About Scouting
Citrus Circuits fosters a positive culture around scouting. We dedicate many hours during competition season

to train objective and subjective scouts, and dedicate over half of our 44-person competition team to scouting.
Additionally, the entire team, including mentors, emphasizes the importance of scouting on our team and how it
contributes to our competitive success.

2.1.2 Subteam Culture
We believe that the most effective teams provide their members with an environment in which team members

feel valued as people and are encouraged to support each other and work together. This environment has three key
elements: prioritizing the health of our members, promoting a highly collaborative environment, and providing every
member the opportunity to participate in large-scale improvements to our subteam.

2.1.2.1 Health

We believe that the health and well-being of our members is more important than their contributions to our team.
As such, we frequently encourage all of our members to take care of themselves (e.g., getting enough sleep, taking
breaks) and remind each other of this commitment when we see someone not taking care of themselves.

2.1.2.2 Collaboration

Developing valuable, working software at the scale of the Scouting System is a difficult task that cannot be
accomplished by a single person. Effective collaboration is essential for the success of our subteam. To facilitate this,
we supplement our subteam culture with two key ideas: idea sharing and knowledge transfer.

Idea Sharing

We encourage everyone to share all of their ideas, regardless of whether they think it is a good or bad idea, as we
believe that the best ideas come from people building off of the ideas of others. Furthermore, we strive to understand
the intention and background behind ideas, rather than shutting them down based on perceived flaws or concerns
with implementation.

We stress the importance of this because historically, some of our best ideas initially seemed absurd. For exam-
ple, we joked about using QR codes for data transfer in the beginning of the 2018 season. Two years later, QR codes
continue to be the most reliable and convenient method of data transfer from the collection to processing components
of the Scouting System.

Knowledge Transfer

In order to collaborate effectively, every member of our team needs to have access to the knowledge that they
need to contribute to our team. Important knowledge includes, but is not limited to:

• Our users’ needs

• What our subteam has tried in the past and how well it worked

• Which tasks should be worked on next

7

• How a piece of software will fit in with the rest of the system

• How to implement a specific software concept

• Unforeseen problems or delays with a task

• Known issues with our subteam or the Scouting System

2.1.2.3 Leadership Opportunities

In order to improve as quickly as possible, we strive to give every member of our subteam the opportunity to
suggest and implement improvements. Scouting Leadership meetings are the primary method we use to encourage
members to participate in making large-scale improvements. We also try to delegate (see Scouting Leadership Team,
Meeting Summaries, and Meeting Leads) to engage as many members as possible in the leadership of our subteam
and to foster a focus on the success of the team over that of individuals.

2.2 Software Principles

2.2.1 Purpose
The purpose of the Scouting System is to aid in 1678’s competition picklist and match strategy creation. In the

development of the Scouting System, picklist creation is a higher priority than match strategy creation.

2.2.2 Prioritization
When developing the Scouting System, we prioritize at several primary scopes:

Most broadly, we prioritize accuracy and reliability over features – it is better to have less data than to have inac-
curate or inaccessible data. To achieve this, we prioritize the features of the visualization software in order to limit the
scope of the Scouting System. This limitation makes it easier to deliver accuracy and reliability by providing a clear
set of features to implement.

While technically not a scope of prioritization, reusability is another main principle we consider when developing
the Scouting System. If the core of the Scouting System can be reused from year to year, it can be improved and
built upon by multiple generations of students. This reuse also allows students to focus more on year-specific features
to ensure the system as a whole is as reliable and accurate as possible, making reusability a key component of the
first level of prioritization.

2.2.3 Prioritization of Tasks
We prioritize individual tasks based on the difficulty of the task and the value we estimate the task to provide.

Prioritizing visualization features enables us to estimate the relative value that tasks will provide. The processes that
we use to prioritize visualization features and individual tasks are Prioritized Data Fields and Task Management, and
are described in the next chapter.

When prioritizing, every item is ranked ordinally. Additionally, we focus more on the order of the highest priority
items because they will be implemented sooner, while the priorities of lower items will often be shifted around multiple
times before the features are implemented.

2.2.4 Limiting Scope
In order to develop a reliable and accurate Scouting System, we limit the scope of our software as much as

possible while still providing the functionality needed to assist in picklist and match strategy creation. To do so, we
limit the number of programming languages used and the amount of data fields visualized (and as a result, data fields
collected).

8

2.2.5 User Interface Optimization
When designing the UI for collecting match data, our goal is to minimize the amount of time a user spends entering

data to maximize the time the user is watching the match. This makes users less likely to miss data that should be
recorded. We also limit the amount of data collected to maximize the accuracy of the data that is collected.

Pit data collection does not require the same speed of input as match data collection, so the UI is optimized for
accuracy (e.g. confirmations, ability to edit data), followed by ease of input.

Both match strategy and picklist visualization are optimized for speed of understanding data. Match strategy is done
between qualification matches, and picklist creation is done in a short meeting after the competition venue closes—in
both situations, the speed at which data can be understood is the limiting factor for how well the data can be utilized.

9

Chapter 3

Processes

3.1 Scouting Leadership Public Meetings

The Scouting Leadership Team holds both private and public meetings. Private meetings include discussions
about specific individuals and the product management of Software Scouting, while the public meetings revolve
around broader discussions with more feedback and ideas (e.g. productivity, training). Any interested member of
Software Scouting is encouraged to come to the public meetings and can submit topics for discussion to a Slack
channel.

3.2 Subteam Procedures

3.2.1 Importance of Documentation
To enable knowledge transfer between members of our team, we strive to document as much information as

possible in a written, publicly accessible format. We primarily use public Slack channels and the 1678 Google Drive
to document procedures specific to Software Scouting and other project specific documents, such as meeting notes,
discoveries, and external resource links.

3.2.2 Meeting Summaries
To keep all members of our subteam updated about our work and progress, meeting summaries are posted in

Slack after each weekend meeting and every two weekday meetings. They summarize what progress was made and
the next steps for a specific crew. Any member of Software Scouting can sign up to write a meeting summary.

3.2.3 Meeting Leads
Any member of Software Scouting can sign up to lead an official subteam meeting. They take on responsibilities

such as giving announcements, preparing the workspace and equipment, taking attendance, and making sure that
our area is clean after the meeting ends.

3.2.4 Development

3.2.4.1 Development of Prioritized Data Fields

Working with 1678’s Strategy subteam, Software Scouting creates a spreadsheet of prioritized fields of data to
be visualized. This allows us to include the necessary data points, focusing on their accuracy, instead of developing
software to get less important data points. Prioritizing our data fields avoids feature creep, which happens when a
system has many new features added to it beyond what was originally planned for. Feature creep causes overcompli-
cation and leads to a worse product. Additionally, prioritizing our visualized data fields lowers the likelihood of initially
developing collection for data fields that turn out to be of little importance.

3.2.4.2 Task Management

In order to organize software tasks, the Scouting Leadership Team utilizes GitHub’s project board feature as a
kanban board. This board contains the prioritized list of tasks, which are created according to the principles listed
under Prioritization of Tasks. As features are assigned, worked on, and merged into the codebase, the Scouting
Leadership Team and GitHub automation keep the kanban board up-to-date. Scouting developers are expected to
keep track of their tasks and check the kanban board throughout the season.

10

3.3 Testing Processes

3.3.1 Reviews
When a Software Scouting member has written code that is ready to be put into the master codebase, they will

need reviews to ensure all master code is functional at all times. This both catches issues with code and increases
knowledge about the code in the subteam. All code written needs both of the following reviews:

• Buddy Review: A line-by-line code review process done with someone who is a member of the same crew.
This is often helpful with catching syntax errors or other common problems.

• Peer Review: A summary of what the code does and the logic behind each action completed with someone
who is not on the same crew. This helps identify logic issues or confusing code.

3.3.2 Tests
Code must also be tested before being put into the master codebase. A front-end developer needs both a user

test and an edge test, while a back-end developer only needs an edge test because the same functionality is covered
in the edge test.

• An edge test is completed by someone in the same crew as the code developer, and is specifically used for
testing edge cases. The tester intentionally tries to crash the app to discover uncommon bugs. This is critical
for catching bugs before they are introduced into the master codebase.

• A user test is completed by someone in a different crew as the developer to see if the general functions and
specific features of the app work. This simulates normal usage of the app and provides information on how
easy the app is to use.

3.3.3 Schema Changes
In our software, the schema is the outline for our data fields and data structures. Throughout the build season, the

schema files are updated and edited. Schema changes have a separate review process as they are a crucial part of
our system’s function and cannot be easily tested. Schema review changes consist of one review from a Scouting
Leadership Team member of each crew. Reviewers read through the changes and evaluate if the schema should
be changed and if the proposed change is the best data format. They also look for areas that may require comments.

3.3.4 Field Tests
As part of the testing process, we schedule multiple tests of the entire Scouting System before each competition

that aim to simulate the competition environment as realistically as possible. We collect data by scouting match videos
to allow calculations to be tested with realistic data. As the data is collected, we process it and display the results
as we would at competition, allowing us to identify bugs that occur when we integrate the individual parts into one
system. Field tests are also used to gain feedback on the user interface and user experience. All members of the
Software Scouting subteam participate in these tests as users.

3.3.5 Daily Product Tests
We regularly test each codebase to catch bugs that went unnoticed during the review process. These tests run

on the latest version of each product. We test each app, document any errors, and run the server on the output of
the match collection apps. These tests are meant to catch errors that reduce app functionality to allow field tests to
be more effective in testing the overall system.

3.4 Competition Process

3.4.1 Before Competition
Preparing the Scouting System for a competition is critical, as we want it to be reliable at competition to aid in

picklist and match strategy creation. If any issues exist within our team’s robot or Scouting System, a competition is
sure to find them. It is with this in mind that Software Scouting follows three processes prior to any competition.

11

The first is scout training, where scouts practice using the app and submitting data. Experience and exposure
is critical to data accuracy, and scout training is often the first experience that scouts have with the Match Collec-
tion app. This training usually takes place the week before a competition. While the training for subjective scouts is
developed by the mentors of the strategy subteam, the training for objective scouts is routine and simulates a much
more common competition experience. Prior to Objective scout training, all objective scouts are required to read
documentation for Objective Match Collection (linked here), which they are quizzed on later.

The physical devices that operate the Scouting System are also prepared prior to the competition. All devices
have their test data deleted and the latest version of all apps installed.

Finally, all Software Scouting codebases have a competition-specific copy made prior to competition. During com-
petition, hotfixes are administered into the copy instead of directly to the main codebase. This separation allows fixes
to be reviewed and merged to the main codebase afer the competition.

3.4.2 During Competition
At competition, all 1678 students have specific roles that they are trained to fulfill. These roles include:

Figure 3.1: Diagram of competition roles

• Objective scouts (enough to fill empty spots on the travel team) and subjective scouts (4-6)

– Utilize the Match Collection app to collect data about robot performance in the qualification matches.

• Objective pit scouts (1-2) and subjective pit scouts (2-4)

– Collect data about individual robots prior to qualification matches using the Pit Collection app.

• Video system operators (2)

– Operate the video system in order to record qualification and playoff matches. Matches that 1678 played
in are viewed by the 1678 drive team in order to review their performance.

12

https://www.citruscircuits.org/uploads/6/9/3/4/6934550/objective_match_collection_user_documentation_2020.pdf

• Lead scout and assistant lead scout (1 of each)

– Relays operational information to the scouts (objective and subjective) in order to improve data accuracy
and to ensure smooth operation of the Match Collection app. Also responsible for scout break rotations.

• Software scouting developers (2-4)

– Fix any bugs found at the competition and ensure the system is operating correctly. At competition, soft-
ware scouting developers actively monitor the Scouting System.

Upon arrival to the stands on competition day, the Scouting System is set up by the software scouting devel-
opers. The video system is set up within this time as well.

Once qualification matches begin all objective scouts and subjective scouts utilize the Match Collection app
to collect data about the matches that they view. During competition, the scouting developers monitor the transfer of
data and administer fixes to the system if and when the system encounters an error.

Objective scouts and subjective scouts are given breaks once every two hours or so for approximately thirty
minutes.

3.4.3 After Competition
After a competition, Software Scouting holds a debrief about the Scouting System including mentors and stu-

dents that wish to participate. Each member gives an answer to the current question one at a time. All answers are
recorded by a predesignated note taker. The questions usually include:

• What went well?

• What could have gone better?

• What are we going to do to improve?

Having a debrief of this nature has been shown multiple times to produce meaningful feedback that has benefited
our subteam tremendously. Without this debrief, many issues could easily be left unaddressed.

Meetings after the debrief are used to create fixes for issues discovered during the competition and continue de-
veloping features for either the next competition or season.

3.5 Offseason

3.5.1 Offseason Training
In order to prepare all new software students for build season, new software students go through a training called

Software General. Veteran members of 1678’s two software teams, Software Scouting and Software Robot, teach
new software students about the principles of programming. The concepts that students learn within Software Gen-
eral can be applied to every programming language and aid them in developing code for our robot and Scouting
System. Students, whether they are veteran or new developers, are expected to work together during Software Gen-
eral. This encourages knowledge transfer and the development of collaboration skills. Once the training is complete,
the new students choose between one of the two software subteams to continue their season on.

Once a week, veteran developers present a basic programming concept (e.g. operators, control flow, functions,
classes), after which the new software students receive an assignment to practice said concept. For the remainder
of the weekly meetings, the students work on the assignments, and veteran members help the students and answer
questions.

All submitted assignments are scored by members of both software subteams for code quality and style. All incoming
software members are expected to demonstrate an understanding of the concepts covered on every assignment, and
to revise their assignments until this proficiency is demonstrated.

We also use the offseason to continue development of the Scouting System, which helps prepare both new and
veteran developers for build season. Offseason development also allows us to make improvements to the codebase,
reducing the work needed in the next season.

13

Chapter 4

Product

4.1 Software

4.1.1 Purpose of Our Software
The goal of our software product is to provide useful data in order to form effective match strategy and aid in our

picklist creation. Our software is composed of three components—collection, processing, and visualization. Collection
is the software used to collect data for robots in matches and in the pits. The server then processes this data by
running computations on the data and pushing raw data and the results of these computations into the database.
This data is visualized for the creation of our picklist and match strategy.

4.1.2 Visualization

4.1.2.1 Picklist Editor

Figure 4.1: The Picklist Editor

At regionals, Citrus Circuits creates its picklist in the evening of the first day of qualification matches, where strate-
gists use data to rank the teams in order of ability to contribute to our alliance. During the alliance selection process,
we pick the highest available team on our picklist. The Picklist Editor displays scoring abilities, driver ability, match
videos, robot information, images, and graphs for each team using data exported from the Server.

Code for the Picklist Editor can be found here: https://github.com/frc1678/picklist-editor-public/tree/

2020

Picklist Editor video: https://youtu.be/WLi4QmJkkb4

14

https://youtu.be/WLi4QmJkkb4
https://github.com/frc1678/picklist-editor-public/tree/2020
https://github.com/frc1678/picklist-editor-public/tree/2020
https://youtu.be/WLi4QmJkkb4

4.1.2.2 Match Strategy Viewer

Figure 4.2: The Viewer app (data is faked)

The Match Strategy Viewer app, or Viewer app, allows strategists to access scouting data on a smartphone.
The Viewer app is used to create our team’s qualification match strategy. It displays the match schedule of our team,
predicted rankings and scores, team details, and current rankings.

Code for the Viewer app can be found here: https://github.com/frc1678/viewer-public/tree/2020

Viewer video: https://youtu.be/WLi4QmJkkb4?t=96

15

https://youtu.be/WLi4QmJkkb4?t=96
https://github.com/frc1678/viewer-public/tree/2020
https://youtu.be/WLi4QmJkkb4?t=96

4.1.3 Collection

4.1.3.1 Match Collection

Figure 4.3: The Objective Match Collection Mode Figure 4.4: The Subjective Match Collection Mode

To collect data about robots in a match, the objective Match Collection and subjective Match Collection modes
are used by their respective scouts. Both modes are contained in the Match Collection app. Objective Match Col-
lection is used by scouts to collect quantitative data for one robot, whereas subjective Match Collection is used by
subjective scouts to collect qualitative data for an alliance of 3 robots. These apps use primarily toggle buttons,
counters, and timers to record data, as well as QR codes for data transfer. Both modes have four screens: Team
Assignment, Data Collection, Edit Information, and QR Display. Other than the Data Collection Screen, all of these
screens are mostly the same.

The code for the 2020 Match Collection app can be found here: https://github.com/frc1678/match-collection-public/
tree/2020

Objective Match Collection Video: https://youtu.be/WLi4QmJkkb4?t=151

Subjective Match Collection Video: https://youtu.be/WLi4QmJkkb4?t=219

16

https://youtu.be/WLi4QmJkkb4?t=151
https://youtu.be/WLi4QmJkkb4?t=219
https://github.com/frc1678/match-collection-public/tree/2020
https://github.com/frc1678/match-collection-public/tree/2020
https://youtu.be/WLi4QmJkkb4?t=151
https://youtu.be/WLi4QmJkkb4?t=219

4.1.3.2 Pit Collection

Figure 4.5: The Objective Pit Collection Mode Figure 4.6: The Subjective Pit Collection Mode

The Pit Collection app is a data collection app used to collect physical properties of robots in the pit area of an
FRC competition. During the practice and qualification matches, subjective pit scouts and objective pit scouts
record data by visiting each team in the pits and asking them questions about their robot. The app has two modes:
Objective Pit Collection and Subjective Pit Collection. In Objective Pit Collection, the pit scout records objec-
tive information about the robot and takes photos of the robot. Subjective Pit Collection records qualitative details
about a team’s climb and their ability to participate in a buddy climb with 1678. This data is then saved and sent to
the Server. The Pit Collection app has 4 main screens: Mode Selection, Team List Screen, Objective Collection
Screen, and Subjective Collection Screen.

The code for the 2020 Pit Collection app can be found here: https://github.com/frc1678/pit-collection-public/
tree/2020

Objective Pit Collection video: https://youtu.be/WLi4QmJkkb4?t=238

Subjective Pit Collection video: https://youtu.be/WLi4QmJkkb4?t=283

4.1.4 Data Transfer
Before competitions, we send the match schedule and team list from the server computer to tablets and phones

using Android Debug Bridge (ADB). The server uses ADB to pull data from all devices after they are connected to
the server computer. ADB is the only way we pull data from the Pit Collection app, and is a secondary method for
pulling data collected through match scouting. The primary way that data is transferred from the Match Collection
app to the server is through QR codes containing match data. With QR codes, there is no need to connect all tablets
to a central port which is plugged into the server, which is difficult to do quickly in the stands. Instead, all that needs

17

https://youtu.be/WLi4QmJkkb4?t=238
https://youtu.be/WLi4QmJkkb4?t=283
https://github.com/frc1678/pit-collection-public/tree/2020
https://github.com/frc1678/pit-collection-public/tree/2020
https://youtu.be/WLi4QmJkkb4?t=238
https://youtu.be/WLi4QmJkkb4?t=283

to be handed around is a wireless QR scanner, which eliminates the use of a wired system.

Figure 4.7: Data transfer of the Scouting System

When subjective scouts and objective scouts finish scouting their robots for the match, the Match Collection
app takes all entered data and compresses it into a string, which is then generated into a QR code and scanned
by the objective and subjective scouts to be scanned into the server console. Match Collection also saves the
compressed string to a local file on the tablet in case the QR code is not scanned. Once all QR codes are scanned
for a match, a server cycle runs.

The Viewer app then pulls and caches the cloud database locally. In order to transfer data to the Picklist Editor, a
CSV file is generated by the server upon request and imported into the Picklist Editor.

4.1.5 Schema
In our software, schema is the blueprint for our data structure. We use schema files to store the standardized

data structure that is used by all apps.

Schema files give our developers the ability to change data fields in a single location and thus increases code
reusability between different FRC games and their changing data fields. They also associate most calculated data
fields with a basic type of calculation such as averages or counts, allowing developers to quickly create new calcula-
tions without writing new code. Developers can also easily change the weighting for calculations which combine other
metrics without altering Server code, making it easier for picklist strategists to change the value of weights during

18

competition. A separate GitHub repository was used to version control the schema files.

The 2020 Schema repository can be found here: https://github.com/frc1678/schema-public/tree/2020

4.1.6 Server

4.1.6.1 Local and Cloud Databases

All of our data is stored on a MongoDB database. Processing is done on data stored in the local database, and
the server pushes changes to the local and cloud databases. Both databases contain the exact same data. For
testing purposes, we can pull data from the cloud database to update the local database we test on. To efficiently
write many changes to the cloud database, we use bulk writes, which are multiple write operations made in a single
call.

Documentation for MongoDB: https://docs.mongodb.com/manual

4.1.6.2 Communictaion with TBA

We use The Blue Alliance’s Read APIv3 (https://www.thebluealliance.com/apidocs/v3) to pull the match
schedule, match results, team list, and rankings. In the database, we store a cache of all the data we receive from
TBA, as well as a timestamp of when the data last changed on TBA. Caching allows us to reduce the number of
requests made, and the timestamp allows us to not download data in the event it has not changed since the previous
request.

4.1.6.3 Logging

Terminal output is used at competition to give scouting developers a clearer understanding of what the server is
doing. Logging is also used to track information about the processes of the server. Essentially every process that the
server performed was logged to a file. Most processes performed by the server are logged to a file, which makes it
easier to trace issues in server processes or major errors to assist in debugging.

4.1.7 Computations

4.1.7.1 QR Handling

All our data is transferred from the tablets used by scouts to the server computer in a compressed format. This
allows us to fit more data into the QR codes, as our scanners can only store 500 characters for each QR. We use
the same compressed format for the secondary method, pulling from files over ADB. The end result is that Match
Collection data needs to be decompressed into a usable format before anything else can be done with the data. This
decompression is done according to the same schema file that the QR is compressed with.

We also have the ability to blocklist or modify QRs. We do not correct errors in the data because there is no way to
ensure that the correction would be valid. Instead, we assign three scouts to each robot, and use a consolidation
algorithm (see Consolidation and Objective Tim Calcs) to decide on a value between all three scouts. However, we
do have the capability to fix errors such as the wrong team or match number being recorded, as this has the potential
to severely diminish the accuracy of the consolidation algorithm.

The capability to blocklist QRs is generally used only in the event of a match replay. We do not delete any raw
data to prevent mistakes leading to data loss. Instead, if it is determined that data should not be used, the raw QR
text is added to a blocklist which then prevents it from being used in future calculations.

4.1.7.2 Consolidation and Objective TIM Calcs

In order to have the most accurate data possible, we assign three objective scouts for every robot in each match.
This redundancy ensures accurate data even if one objective scout makes a mistake. Consolidation is the process
of taking the unconsolidated Team In Match data (TIM) and figuring out “what actually happened” based on those.
All the categorical data fields we consolidate are boolean (data that is true or false, e.g. whether a robot crossed the
initiation line) or numerical (data represented by a number, e.g. the number of goals scored in the upper goal).

19

https://github.com/frc1678/schema-public/tree/2020
https://docs.mongodb.com/manual
https://www.thebluealliance.com/apidocs/v3

To consolidate boolean data, we use the result that the majority of scouts obtained. If only two scouts are as-
signed to a robot and they disagree about an event, we say that the event did not happen.

To consolidate numerical data, such as action counts or time spent climbing, we first look to see if scouts agreed.
If there is one value agreed on more than others, we say that is the number that happened. Otherwise, the server
calculates a weighted average of the values, where the weight is the squared reciprocal of the distance (in standard
deviations) from the mean of these values.

The code for Objective Team in Match Calculations can be found here: https://github.com/frc1678/server-public/
blob/2020/calculate_obj_tims.py

4.1.7.3 Inner Goals Regression

Since it is very difficult for scouts to tell whether a robot is scoring inner goals or outer goals, we had them report
only the total number of high goals. We then assumed that the proportion of high goals that go into the inner goal is
constant for each team. Using the total number of inner goals for each alliance, which TBA gives us, and the total
number of high goals scored by each team, which our objective scouts give us, we can approximate each team’s
proportion of inner goals to high goals.

We find a “best solution” that will minimize the total square error, running only on teams that have scored high
goals. This method, least squares, is also used for calculating Offensive Power Ranking (OPR). Finally, we clipped
the result for each team to be between 0 and 1 so that it is more usable for calculations and makes more sense for
strategists.

The code for the inner goals regression can be found here: https://github.com/frc1678/server-public/blob/

2020/inner_goals_regression.py

Information about how OPR is calculated can be found here: https://blog.thebluealliance.com/2017/10/05/

the-math-behind-opr-an-introduction/

4.1.7.4 Subjective Team Computations

Driver ability is a statistic for teams that is designed to represent driver skill. This metric forms an important part
of the assessment of the defensive ability of a team because many teams do not play defense during qualification
matches, but driver ability is very strongly related to how well a team plays defense. This metric is based on the agility
and rendezvous rankings subjective scouts give to teams in each match. These scores are combined into the driver
ability statistic based on weights determined by strategists.

4.1.7.5 Pick Ability

Strategists begin developing our picklists by using computer-sorted lists of teams and editing them after the first
day of qualification matches. For each robot, the server calculates two values to summarize how much they would
contribute to our elimination-round alliance: first and second pick ability, which are used to create first drafts of our
first and second picklists, respectively. These scores are important because they reduce the amount of work and
discussion required during the picklist draft by giving a preliminary sort of teams. Each ability score is a weighted
average of a team’s offensive and additionally, for second pick ability, defensive capabilities. Pick ability roughly
represents how much of a point swing a team will contribute to our alliance, either by scoring points or preventing
points from being scored. Throughout the season and during competitions, we adjust the weights used to calculate
pick ability.

4.1.7.6 Predictions

Using the data that we collect during a competition, we try to predict what will happen later in the competition.
By looking at the averages of scoring abilities for each team in an alliance, we can calculate their chance of scoring
enough power cells to get a ranking point or the chances of the alliance getting the climbing RP. As we collect more
data, we are able to accurately predict scores and ranking points for future matches, as well as teams’ final seedings.
These help us develop our match strategies and our picklists.

20

https://github.com/frc1678/server-public/blob/2020/calculate_obj_tims.py
https://github.com/frc1678/server-public/blob/2020/calculate_obj_tims.py
https://github.com/frc1678/server-public/blob/2020/inner_goals_regression.py
https://github.com/frc1678/server-public/blob/2020/inner_goals_regression.py
https://blog.thebluealliance.com/2017/10/05/the-math-behind-opr-an-introduction/
https://blog.thebluealliance.com/2017/10/05/the-math-behind-opr-an-introduction/

4.1.7.7 Functionality Without Internet

Another important feature is the ability for the server to run without Internet, albeit with limited functionality. Without
Internet, we can still collect and store data from QRs and tablets attached over USB, perform objective calculations
that do not require data from TBA, and run calculations involving subjective data. While recent hardware acquisitions
reduce the need for this functionality by improving the reliability of Internet access, it is still essential to be able to
collect and store data to prevent loss.

4.2 Hardware

Because the Scouting System is so specialized, it requires a unique and diverse range of hardware. The goal of
this section is to explain how the different physical parts of the system work together, as well as some of the reasoning
behind choosing specific devices and a few of their shortcomings. However, it is certainly not necessary to have a
complicated system in order for it to be effective, and most scouting systems are smaller while still being effective.
Our Scouting System has reached this point by steadily improving since 2013

Every device in the Scouting System must be safely stored and transported. To do this, the hardware compo-
nents of the system are placed into different cases depending on their use. There are two tablet cases, a laptop
case and a video system case. Our main priority for the cases was the ability to act as carry-on luggage for an air-
plane, because they would hold lithium ion batteries and therefore could not be checked. To ensure that the devices
are well-protected and easy to transport, we looked for cases which were waterproof and had wheels. All of these
features are found in the Nanuk 935 cases we chose.

4.2.1 Tablet Case
The tablet case (Figure 4.8) is used to keep track of tablets and phones and keep them charged during the whole

season. The devices are all plugged into a powered USB hub, which allows all of them to be charged or updated
at once. The USB hub is connected to a power supply. The cases have a built in charger for each tablet. We use
Lenovo Tab E7 tablets for the Match Collection app and the objective mode of the Pit Collection app. Pixel 3a
mobile phones run the Viewer app and the subjective mode of the Pit Collection app. The phones are included so
that all strategists have an Android phone to use the Viewer app on, since we discontinued the iOS version of the
Viewer app to more effectively develop the other apps.

Figure 4.8: The Tablet Cases

21

4.2.2 Laptop Case
The laptop case carries server laptops for competition. It also holds three Tera Wireless QR scanners, each with

a charging base. This case also carries the Netgear 4G LTE Modem and two hotspot antennas to connect to the
Internet.

The wireless scanners are used to get data from the objective scouts and subjective scouts tablets by scan-
ning QR codes generated after each match based on what the scouts inputted. During the season, we noticed some
issues and limitations with the scanners, such as the 500-character limit for QR codes stored on the scanner before
uploading, and a bug where scanning certain length QR codes with less delay settings cause problems uploading.

The case also holds the laptop used to run the server, which is a Lenovo Thinkpad E590 running Ubuntu 18.04
LTS.

The case contains a hotspot to allow the Scouting System to access the Internet at competitions. It is a NET-
GEAR 4G LTE Modem attached with an antenna. It connects to a NETGEAR 5-port network switch, which connects
to the server laptop and allows it to communicate with the Picklist Editor laptop and the cloud database. The hotspot
and network switch do not have batteries and are powered by a DC-UPS (Direct Current Uninterruptible Power Sys-
tem) so that we can maintain an Internet connection even without a power outlet. An inverter stored in the video
system case powers the UPS and the laptops.

4.2.3 Video System Case
During competition, the video system is used to record match videos for reference by strategists. The main

components of the system are the camcorder, tripod, and inverter.

The camcorder is a Canon Vixia HF100. It uses a wide-angle conversion lens (Raynox HD-5050 Pro Wide Angle
Conversion Lens 0.5x) to widen its field of view to fit the whole field. The camcorder is mounted on a tripod to hold it
up to the appropriate height.

For power supply during competition, the video system case contains a Potek P1500 inverter which is connected to
a robot battery to power the camcorder and charge its extra batteries. A problem discovered was that the inverter’s
leads would not always properly connect to the battery, which resulted in occasional power loss. This was fixed after
the LAN Regional.

From the camcorder, videos were transferred via SD card to the Picklist Editor laptop, and occasionally to a tablet
for a strategist (see Figure 4.9).

Finally, the Video System case holds miscellaneous items such as gaff tape and a sandbag.

22

Figure 4.9: Diagram of Data Transfer within the Video System

23

Chapter 5

Analysis

5.1 Data Accuracy

We obtain a rough estimate of how accurate our data is by comparing the total number of balls scored by an
alliance with the sum of the number of balls scored by each team on that alliance according to our scouts. If our
objective scouts were perfect, there would be zero difference, but the farther off they are, the more they will disagree
with TBA’s total alliance counts – so ideally, we want to minimize the average error. Below, we look at how the mean
absolute difference changes if we have fewer scouts or if we use a different consolidation algorithm.

5.1.1 Overall Accuracy at LAN

Figure 5.1: Mean absolute error with complete and incomplete sets of objective scouts

At LA North, there was an unknown issue that led to data loss, resulting in missing data for most matches from a
single tablet. This issue led to us not having a full set of objective scouts on a single robot in slightly under half of all
matches scouted, which in turn had a negative impact on data accuracy. This impact can be seen when we compare
the sum of the scouting data for each robot on an alliance to the scoring data stored on TBA for that alliance. In
general, the Mean Average Error for alliances with at least one robot missing an objective scout was higher than for
alliances with complete objective scouts. Power cells scored in the lower port during teleop do not meet this trend,
however, that type of scoring happened infrequently compared to power cells being scored in either the inner or outer
port. We think it is likely that this discrepancy is due to noise or other factors unrelated to the number of objective
scouts.

24

5.1.2 Number of Disagreements Within Consolidation

Figure 5.2: Number of Disagreements by Type and Datafield

This data on the number of disagreements between objective scouts demonstrates how crucial a good consol-
idation system is. At LA North, there were 352 total instances for which not all objective scouts agreed on the
scoring of one robot. Some of these disagreements were across different data fields for the same robot, but there
were still disagreements in a large majority of matches, showing the influence the consolidation algorithm had on
data accuracy. Also important is that in the majority of disagreements, we were able to consolidate based on the
agreement of the majority scouts, shown in Figure 5.2 under “Majority Decided Disagreements”. Objective scout
disagreements are also at least roughly related to the frequency of the action:

Figure 5.3: Total Occurrences of Common Scoring Types in Qualification Matches at LA North

We can see that actions that happen more frequently are disagreed on more, which makes sense. The more often
an action happens, the more often errors recording it should happen assuming a constant error probability.

25

5.1.3 Comparison of Consolidation Methods

Figure 5.4: Comparison of Mean Absolute Error Using Our consolidation Algorithm and consolidation by Averaging
Objective Scout Data

The graph above shows that our consolidated TIMs were closer to TBA’s alliance totals than they would have
been if we just averaged unconsolidated TIM data. Although averaging appears to have worked slightly better for
Teleop low balls, our consolidation algorithm, which puts more weight on objective scouts that were closer to the
average, worked better overall.

5.1.4 Data Accuracy with Fewer Scouts

Figure 5.5: Average Absolute Difference From TBA Alliance Data with 1, 2, and 3 Scouts

One of the greatest contributors to the accuracy of the system is the number of scouts. More objective scouts
means that after consolidation, the data should be less vulnerable to instances of human error leading to inaccurate
data. To demonstrate this, we used the results from each individual objective scout to determine the expected

26

accuracy of both one and two objective scouts per robot. Both took the average of every possible combination of
the data we acquired using three objective scouts to give as accurate a comparison as possible. For two scouts,
we used our existing consolidation method to consolidate each data point. It is clear that for the high goal, three
objective scouts is significantly better than two both in autonomous and during the teleoperated period. However,
the low goal sees little difference between the two, although more variance is expected from scouting results for the
low goal because significantly less data was collected.

5.1.5 Takeaways
Scouting the low goal, while more accurate than the high goal, was much more error prone during the teleoperated

period than might have been expected based on frequency. This is likely because the low goal was harder to scout
than the high goal: most objective scouts during scout training found that the low goal was more difficult to scout
because robots would drive up to it, making it hard to tell how many power cells were scored. This could possibly be
addressed by more training as it could make objective scouts more consistent in determining the number scored.
High Goals in Autonomous were also likely more disagreed upon and more inaccurate due to the short time of au-
tonomous, which often lead to multiple robots scoring in the high goal at once.

Despite this, the overall accuracy of the system was very good, with an average error of less than one game piece per
alliance per match for every scoring location. Per robot, the average absolute error for all scoring locations combined
was well under one game piece per match, meaning that the data for each robot at the end of competition was very
close to the actual number. This met our prioritization of data accuracy over data quantity, in keeping with the philos-
ophy that bad data is worse than no data. Using multiple well trained scouts for each robot and strong consolidation
algorithms allowed us to maintain significantly higher data accuracy than would have been possible with a single
scout per robot.

5.1.6 Accuracy of Inner Goals Regression
The regression 1678 used for calculating inner goals scored by each team treats teams’ inner goal accuracy

rates (inner goals scored divided by high goals scored) as constant between matches, even though they are not,
which results in inaccurate estimates for how many inner goals teams score in each match. This inaccuracy can be
measured by looking at the difference between how many inner goals the alliance scored in a match (according to
TBA) and how many inner goals the alliance would have scored if their accuracy rates were constant. The standard
error for alliances’ number of inner goals in autonomous was .834, and 1.533 for teleop. This indicates that the
regression method was off by a fair amount, but it was probably the best option available, since objective scouts can
not be expected to reliably tell which goal a ball enters. Nonetheless, the calculated accuracy rates for each team
were reasonably good representations of the overall average accuracy rates across their matches.

5.2 Strengths

5.2.1 Prioritization and Limiting Scope
This year, we simplified our system by identifying collection fields early in the season, and focusing on not du-

plicating data that could be collected from The Blue Alliance (TBA). By collaborating with the strategy subteam, we
were able to determine the data we needed to visualize, and then determine what data we needed to collect. This
involved making the decision to not collect data on whether a high goal was scored in the inner or outer port, as it
was too difficult to scout and we prioritized data accuracy. Another improvement we made was limiting the number of
platforms used, which saved developer resources and made it easier for developers to share knowledge. This also
allowed programmers to use the same tools, increasing productivity and the ability of people to help others.

5.2.2 Code Quality and Review Process

5.2.2.1 Code Quality

Additionally, this year developers focused more on code quality. Namely, style was more consistent across each
code base, assisted by increased implementation of style guides. Overall, code was also better commented and
more readable than in the past. These improvements helped make parts of the system more robust, particularly
those completed earlier in the season as these sections were most carefully written and reviewed.

27

5.2.2.2 The Review Process and Knowledge Transfer

These code quality improvements were facilitated by an improved review process. Although our review process
was not ideal, it was significantly improved from last year, and was somewhat successful in its goals of catching errors
and helping developers understand more of the system.

5.2.2.3 Code Reusability

We also emphasized code reusability this season. The use of schema allowed us to minimize code modifications,
define the weights of variables in the schema rather than in the code, and modify or create some calculations without
code changes. Developers working on all parts of the system utilized schema as much as possible, and worked to
make calculations, QR decompression, the displaying of data, etc. more game-agnostic. Programmers working on
the Match Collection app and the Pit Collection app also defined sizes in resource files, and used styles to allow
changes for different elements to be made in a single place, utilizing reusable superclasses. The Viewer app uses
configuration files to change what is displayed, and a “translation file,” which maps database name to the displayed
name. Finally, the Objective and Subjective Pit Collection app’s code is very reusable and works on phones and
tablets, through the use of the same view for objective and subjective data collection, and it does not change much
from year to year.

5.2.3 Documentation
Consistent documentation also helped simplify knowledge transfer about subteam processes, for example using

the 2019 whitepaper as a reference, particularly to teach new members more about our subteam. We also gave
regular meeting summaries to assist people in understanding what progress is made during each meeting.

5.2.4 Reliability of the Match Collection App
Finally, our Match Collection app’s code this year was very reliable. During Los Angeles North (which was the

only competition we were able to attend this year), the Match Collection app only experienced one minor bug where
minimal match data was lost, partially due to scouts forgetting to advance the data collection mode to teleoperated.
The Match Collection app was tested the most out of all our code this year, and showed the benefits brought by
our subteam’s strengths this year. This the first time in the Match Collection app’s history that there were little to no
performance issues at the first competition of the season.

5.3 Weaknesses

5.3.1 Knowledge Transfer in Offseason and Build Season

5.3.1.1 Software General

Software General training’s goal is to teach new software members, from both software robot and software
scouting, the essential skills they need in order to learn subteam-specific skills during the offseason and then con-
tribute to the subteam’s goals during the season. Unfortunately, the development of the 2019 Software General
curriculum was very rushed and the students did not gain the critical skills for build and competition season. The
curriculum was too focused on the technical aspects of writing code, rather than the essential skills of critical thinking
or the collaboration that we wanted members to gain during the offseason.

The lessons were taught by veteran software members, some of whom were not always engaged with their peers,
not interested in teaching, or not fully comfortable with the content being taught. Additionally, assignments affiliated
with each lesson were too large to allow students to properly practice the concepts taught in the lesson. Due to the
differing experience levels of new members, there were often students who finished assignments early and were left
to either help others or do nothing until everyone was finished with the assignment.

5.3.1.2 Issues With Collaborative Learning

Learning how to develop the Scouting System is a very collaborative process, one which we had some difficulties
with. A prominent issue in our subteam was due to an imbalance of skill level and technical confidence, which led to
difficulties in communication, asking for help, and completing tasks. This year, we had 12 new developers, which led
to a strain on veteran developers in both training and in the workload. This caused veterans to have more difficulty

28

learning and training themselves in preparation for the season and slowed down progress on some tasks. There
were also issues in the willingness of some subteam members to collaborate on projects, leading to difficulties in
productivity on tasks. More, the staggering ratio between veterans and new members led to an even larger technical
knowledge gap.

5.3.2 Testing and Review Process Issues

5.3.2.1 No End to End System

One major reason our subteam struggled with testing was the lack of an end to end system. Although we had
originally made it our first priority to create a full end to end system, due to inconsistent deadlines, problems with
scanners, and both crews working at different paces, the end to end system was created much later in the season
than expected. Due to this delay, it was much harder to run full system tests. Without these large-scale tests, there
were more faults in the code at competition across both ends.

5.3.2.2 Issues with Consistence of Tests

Our review process this year, while improved from in the past, still had many issues. Although it caught many
mistakes, it still let through major logic errors and even completely broken code. This flaw primarily stemmed from
the extreme inconsistency of tests and reviews, which ultimately completely depended on the reviewer/tester. Many
members did not understand the importance of reviews and tests, which led to them staying silent when they did
not understand the code. With a wide range of technical experience and knowledge, as well as different confidence
levels, the effort and depth of reviews and tests changed widely depending on the person; inconsistency greatly led
to countless bugs getting merged into master code.

5.3.3 Work Distribution
The distribution of tasks off the backlog was often problematic. Since our most experienced developers were

usually busy, we assigned difficult or high priority tasks to available developers, which often ended up with developers
being given tasks that were too difficult for them at the time. Occasionally, we would assign low priority tasks before
higher priority tasks, since the developers who were able to do the high priority tasks were occupied. Another issue
was that some tasks would have too many people assigned to it, while larger tasks wouldn’t have enough people. To
make up for these issues, many scouting members were switched from their assignments mid-project, causing a lot
of confusion and hindering progress on certain tasks.

There were also issues with prioritizing tasks on the backlog. We didn’t always identify which tasks were holding
others up, and sometimes those blocking tasks that should’ve been high priority were lower on the backlog than they
should have been.

5.3.4 Data Structure
We established our data structure before any of us understood how to use MongoDB properly, and stuck with

that architecture for the rest of the season. Our functions for communicating with the database were convoluted and
unreliable, and were all built for very specific interactions.

5.3.5 Lack of Milestones
During the 2020 Season, Software Scouting did not have “soft” deadlines, or deadlines of any kind. Conse-

quently, we had difficulty completing all necessary tasks before competition. Our only deadline at the start of the
season was LAN, but the feature cutoff we set for it was not early enough and was not enforced. The absence of
goals or deadlines within the season led to a lack of urgency and decreased efficiency, as well as causing a late end
to end system and therefore less effective testing (see Testing and Review Process Section). Having an end to end
system would also have guided us in setting a productive pace by making future steps more clear and attainable, so
the lack of an end to end system also became somewhat of a self perpetuating issue.

5.3.6 Insufficient User Feedback
Another key issue in this year’s Scouting System was that we did not receive enough feedback from our users.

Part of this problem was that we did not know who all of our secondary users were until after LAN. Additionally, our

29

visualization apps were less effective because we did not communicate enough about what the visualization UI (es-
pecially the Viewer app) was expected to look like, resulting in user dissatisfaction.

One specific issue we ran into at LAN was the scale in the subjective mode of the Pit Collection app. In the subjective
section of the Pit Collection app, we used a different scale than the subjective pit scouts wanted: ranging from 1-4
instead of the expected 1-10. If we had collected more user feedback about this app before competition, we would
have been able to completely avoid the confusion and potentially less accurate data.

Probably the worst consequence of insufficient user feedback was the lack of app distribution to our users. We
were unsure about who all of our secondary users were, resulting in some of our users not getting the Viewer app.
Although its most important users had the app, the secondary users were not given the app. If we had collected more
feedback about the Viewer app, we would have been able to distribute the app to everyone who needed it.

30

Chapter 6

Future Improvements

6.1 Overview

In Software Scouting, we strive to continue improving our system and subteam in every way possible. Although
the 2020 season was cut short, we were on track to add significant functionality to our system by the end of the
season. We plan to continue working on additional features of our system this offseason.

6.2 Offseason Education Revamp

For the 2020 offseason, we plan to drastically improve our offseason training. We will prioritize the topics that
we teach new members during Software General and during Software Scouting specific training in order to better
prepare them for the fast-paced environment of the subteam. This includes focusing less on specific programming
structures and concepts, and having a greater focus on problem solving and research skills.

6.3 Improved Testing Procedures

Testing not only aids all of software but is a major facet to our scouting success, as it allows us to catch bugs
in the system that would otherwise go unnoticed. Having an end to end system at all times is crucial for testing the
Scouting System and getting helpful feedback from users. Furthermore, not having a fully functioning end to end
system led to reliability issues at LAN and complicated development for apps as testing became significantly harder.

One way to improve testing is to create automated tests, which run whenever an app or the server is updated. Having
both human and automated testing would have caught some bugs that made their way into the Scouting System.
One particular procedure that may be used in the future is Test Driven Development, where tests are prepared before
new code is written. This gives more structure to the process of each code change and allows programmers to have
a better idea of what code should do before it is written.

Although we had field tests in the 2020 season, they did not test the whole system. Ideally, several full system
tests should have been completed. Full system tests would force the subteam to consistently have an end to end
system because the tests rely on the existence of such a system. In addition, a full system test is the only reliable
way to regularly test all interactions between parts of the Scouting System.

6.4 Improved Software Features

While improving offseason education is our first priority for the 2020 offseason, we also plan on implementing
several features to improve the Scouting System for future seasons. This year, we focused heavily on writing code
that could be reused in future years wherever possible. This was usually successful, however there are still some
areas where the code and schema could be further generalized and made game-agnostic. One example that af-
fected us even during this season was when we decided to switch subjective scouts from collecting driver speed to
driver rendezvous agility. It took us significantly longer than it could have because the code assumed that the metric,
otherwise calculated the same, was called driver speed.

We also plan to take TBA alliance data into account for consolidation. We had planned to have this completed
before the Sacramento Regional so that it would be tested during competition before the Houston Championships.
However, with the suspension of the season, it turned into something that would get completed during the offseason.
consolidation using TBA data will improve data accuracy by ensuring that team values add up to be consistent with
the final match score.

31

Another feature that likely would have been completed by Sacramento Regional was database schema validation
and enforcement. This would help increase reliability by catching instances where incorrectly typed data was put into
the database.

Additionally, we would like to add graphs for the Viewer app, to help users easily visualize collected data. This
element was in the process of being implemented during the season and would most likely have been completed by
Sacramento Regional.

32

Chapter 7

Conclusion

7.1 Overall

The Citrus Circuits Scouting System has evolved significantly since 2013 and was the most effective and reli-
able it has ever been in the 2019-2020 season. This is due to our preseason redevelopments, as well as the new
processes, procedures, and debriefs implemented in the Software Scouting subteam.

7.2 Utilization of Human Resources

To create our electronic scouting system, the Software Scouting subteam requires many resources, primarily
the time and commitment of many dedicated software developers. During the 2020 season, the Software Scouting
subteam had 24 members, with 13 working on the server, and 11 on the collection and visualization apps. This was
significantly more members compared to last year with 15 total developers.

Our season is split into two sections: the offseason and the build/competition season.

• Offseason (August–December):

– Regular meetings two nights a week (5 hours total)

– Used for training new and veteran members, as well as discovering new ways to improve our system for
the upcoming season

– Discussed and implemented new Scouting System structure for system redevelopment

• Build and competition season (January–April):

– Four mandatory meetings a week (21 hours total)

– Used for programming and testing the Scouting System

In order to complete our Scouting System on time, we often end up working during extra team meetings and
outside of meetings to meet deadlines and complete all required work. Scouts also spend several hours before each
competition training on their respective apps.

7.3 Resources

7.3.1 2020 Scouting System Software
The 2020 software is available at https://github.com/frc1678 For individual links:

• Match Collection app: https://github.com/frc1678/match-collection-public/tree/2020

• Pit Collection app: https://github.com/frc1678/pit-collection-public/tree/2020

• Viewer app: https://github.com/frc1678/viewer-public/tree/2020

• Picklist Editor code: https://github.com/frc1678/picklist-editor-public/tree/2020

• Server code: https://github.com/frc1678/server-public/tree/2020

• Schema files: https://github.com/frc1678/schema-public/tree/2020

33

https://github.com/frc1678
https://github.com/frc1678/match-collection-public/tree/2020
https://github.com/frc1678/pit-collection-public/tree/2020
https://github.com/frc1678/viewer-public/tree/2020
https://github.com/frc1678/picklist-editor-public/tree/2020
https://github.com/frc1678/server-public/tree/2020
https://github.com/frc1678/schema-public/tree/2020

7.3.2 Agile Software Development
Information for Agile software development can be found here: https://agilemanifesto.org

7.3.3 Past Whitepapers
For past whitepapers, please reference our website: https://www.citruscircuits.org/scouting.html

7.3.4 The Blue Alliance
Excellent website for viewing data on FRC. Provides an API for easily pulling data from the site for use in custom

scouting system software.

https://www.thebluealliance.com

7.3.5 Fall Workshops
Citrus Circuits students and mentors hosted several workshops/seminars focused on different aspects of our team.

https://www.citruscircuits.org/fallworkshops.html

The most recent workshop on Scouting System Development can be fonud here:

https://www.youtube.com/watch?v=LYLG_Vdm-QQ

7.3.6 Simbots Seminar Series: Scouting and Match Strategy
Seminar by the renowned mentor of Team 1114, Karthik Kanagasabapathy. Covers various methods of scouting,

development of match strategy, and the foundations of mathematical analysis techniques in FRC.

https://www.youtube.com/watch?v=l8syuYnXfJg

7.3.7 Overview and Analysis of FIRST Stats
Comprehensive overview of mathematical analysis of FRC and FTC teams. Covers concepts ranging from simple

analysis such as OPR, DPR, and CCWM to more complex methods such as WMPR, EPR, and MMSE techniques.
Some knowledge of linear algebra recommended.

https://www.chiefdelphi.com/t/overview-and-analysis-of-first-stats/144569

7.3.8 Contact Us
We are interested in helping develop the FRC scouting community and opening the power of an electronic scouting

system up to other teams. If you have any questions, please contact us at softwarescouting@citruscircuits.org.

34

https://agilemanifesto.org
https://www.citruscircuits.org/scouting.html
https://www.thebluealliance.com
https://www.citruscircuits.org/fallworkshops.html
https://www.youtube.com/watch?v=LYLG_Vdm-QQ
https://www.youtube.com/watch?v=l8syuYnXfJg
https://www.chiefdelphi.com/t/overview-and-analysis-of-first-stats/144569

Glossary
ADB

ADB stands for Android Debug Bridge, a tool used to help with debugging Android apps. In the Scouting System,
it is used to pull data from all apps to Server. 17, 19

Codebase

Refers to a specific software component of the 1678 Scouting System (e.g. Server, Match Collection). 10–13

(To) Consolidate

For each datapoint gathered from the objective Match Collection, there are three unconsolidated values, one
from each objective scout. The consolidation process takes these values and uses them to find the single most
accurate value. 19, 20, 24–27, 31

Crew

Software Scouting is divided into two “crews”: Back-end and Front-end. Front-end is responsible for developing
software that users must interact with. Back-end is responsible for developing the Server which connects all of
the other pieces of software. 5, 6, 10, 11, 29

Match Collection

The Match Collection app gathers data about robots or alliances in a match. Match Collection has two “modes”:
objective and subjective. In objective mode, objective scouts collect objective data about a team’s robot in a
match (e.g. number of high goals a robot scored in a match). In subjective mode, subjective scouts collect
subjective data about the three robots in an alliance. The objective data is collected by three objective scout for
each robot in a match, while subjective data is collected by a subjective scout for all three robots in an alliance.
4, 5, 12, 13, 16–19, 21, 28, 33, 35, 36

Objective Pit Scout

Objective pit scouts collect objective data about a team’s robot (e.g. number of motors, and drivetrain type). 5, 12,
17, 35

Objective Scout

A 1678 member that collects objective data about the performance of a single robot in a match (e.g. the number
of high goals that a robot scored in a match). At every match in a competition ideally there are 18 objective scouts
scouting a match, with 3 objective scouts assigned to each robot. 5–7, 12, 13, 18–20, 22, 24–27, 35

OPR

A team’s OPR is an estimate of the average points a team contributes to each alliance. 20

Picklist Draft

The process during which strategists modify the picklist from the original computer-sorted list of teams. This
mainly takes place in a discussion on the night of the first day of qualifications. 20, 37

Picklist Editor

The spreadsheet that is used during the Picklist Draft. It’s data is imported by a CSV file that is generated by the
Server. 4, 5, 14, 18, 22, 33, 36

Pit Collection

The Pit Collection app gathers objective and subjective data about robots in the pit. The users of the objective
mode of the Pit Collection app are called objective pit scouts, and the users of the subjective mode of the Pit
Collection app are called subjective pit scouts. 4, 5, 12, 17, 21, 28, 30, 33, 36

35

Schema

Schema outlines how our data is structured. For example, Match Collection Schema details what characters
stand for the specific actions that a robot can do within a match of Infinite Recharge so that the data can be
compressed. 11, 18, 19, 28, 31–33

Scout Training

A session for scouts to practice the data collection process, usually using match videos from a recent competition.
12, 27

Scouting Leadership Team

The Scouting Leadership Team is a group of 6 veteran members within Software Scouting that helps with the
management and leadership of the subteam. 6, 10, 11

Scouting System

The system that 1678 uses to collect, process, and visualize data in order to aid in match strategy and picklist
creation at competition. There are two apps that collect data: Pit Collection and Match Collection. The data
from these apps is processed by Server, then displayed on the Viewer app and the Picklist Editor. 4, 5, 7, 8,
11–13, 18, 21, 22, 28, 29, 31, 33, 35

Server

Server makes up the totality of the software scouting back end. It handles decompression, consolidation, and
calculations. 4, 5, 11, 14, 17–22, 31, 33, 35, 36

Server Computer

A specific set of computers that the Server is designated to run on. 17, 19

Software Robot

A subteam of 1678 Citrus Circuits. The purpose of Software Robot is to create autonomous and teleoperated
systems that work consistently and effectively to maximize the potential of mechanical systems. 13, 28

Software Scouting

A subteam of 1678 Citrus Circuits. The purpose of Software Scouting is to create the most valuable software to
aid in 1678’s competition picklist and match strategy creation. 4–6, 10–13, 28, 29, 31, 33, 35, 36

Software Scouting Developers

Members of Software Scouting. 13

Strategist

A team member, either a student or a mentor, who contributes to the match strategy and picklist of 1678. 14, 15,
18, 20–22, 35, 37

Subjective Pit Scout

Subjective pit scouts rate the ease of buddy climbing with the 1678 robot using the subjective mode of the Pit
Collection app. 5, 12, 17, 30, 35

Subjective Scout

A 1678 member that collects subjective data about the performance of three teams robots in a match (e.g. the
robot’s speed). There are two subjective scouts scouting in a match, one for each alliance. 5–7, 12, 13, 16, 18,
20, 22, 31, 35

TIM

Data about a single robot in a single match. Can be objective or subjective. 19, 26

Unconsolidated Data

Objective match data from objective scouts before consolidation. 19, 26, 35

36

Video System

The system used to collect match videos for strategists to refer to during the picklist draft night. 12, 13, 21–23,
37

Video System Operator

Operate the video system in order to record qualification and playoff matches. Matches that 1678 played in are
transferred and viewed by the 1678 drive team in order to review their performance. 12

Viewer

An Android app used by strategists to view data. 4, 5, 15, 18, 21, 28, 30, 32, 33, 36

37

	Introduction
	Bolded Terms
	Purpose of Whitepaper
	Why Scout
	History
	System Overview
	Subteam Structure
	Crews
	Scouting Leadership Team

	The Game

	Principles
	Organizational Principles
	Team Culture About Scouting
	Subteam Culture
	Health
	Collaboration
	Leadership Opportunities

	Software Principles
	Purpose
	Prioritization
	Prioritization of Tasks
	Limiting Scope
	User Interface Optimization

	Processes
	Scouting Leadership Public Meetings
	Subteam Procedures
	Importance of Documentation
	Meeting Summaries
	Meeting Leads
	Development
	Development of Prioritized Data Fields
	Task Management

	Testing Processes
	Reviews
	Tests
	Schema Changes
	Field Tests
	Daily Product Tests

	Competition Process
	Before Competition
	During Competition
	After Competition

	Offseason
	Offseason Training

	Product
	Software
	Purpose of Our Software
	Visualization
	Picklist Editor
	Match Strategy Viewer

	Collection
	Match Collection
	Pit Collection

	Data Transfer
	Schema
	Server
	Local and Cloud Databases
	Communictaion with TBA
	Logging

	Computations
	QR Handling
	Consolidation and Objective TIM Calcs
	Inner Goals Regression
	Subjective Team Computations
	Pick Ability
	Predictions
	Functionality Without Internet

	Hardware
	Tablet Case
	Laptop Case
	Video System Case

	Analysis
	Data Accuracy
	Overall Accuracy at LAN
	Number of Disagreements Within Consolidation
	Comparison of Consolidation Methods
	Data Accuracy with Fewer Scouts
	Takeaways
	Accuracy of Inner Goals Regression

	Strengths
	Prioritization and Limiting Scope
	Code Quality and Review Process
	Code Quality
	The Review Process and Knowledge Transfer
	Code Reusability

	Documentation
	Reliability of the Match Collection App

	Weaknesses
	Knowledge Transfer in Offseason and Build Season
	Software General
	Issues With Collaborative Learning

	Testing and Review Process Issues
	No End to End System
	Issues with Consistence of Tests

	Work Distribution
	Data Structure
	Lack of Milestones
	Insufficient User Feedback

	Future Improvements
	Overview
	Offseason Education Revamp
	Improved Testing Procedures
	Improved Software Features

	Conclusion
	Overall
	Utilization of Human Resources
	Resources
	2020 Scouting System Software
	Agile Software Development
	Past Whitepapers
	The Blue Alliance
	Fall Workshops
	Simbots Seminar Series: Scouting and Match Strategy
	Overview and Analysis of FIRST Stats
	Contact Us

	Glossary

