
By Austin Schuh (971), Wes Hardaker (1678),
Marshall Massengil (900), Alex Y (254)

Software Architecture

What is software architecture?
● Outcomes and stakeholders

○ Defining success criteria

○ Not just limited to “software

people”...

● Higher level structure of a project

○ Not just robot projects

○ People, Process, & Technology

https://xkcd.com/743/

Over Architecting
“I would not give a fig for the simplicity

on this side of complexity, but I would

give my life for the simplicity on the

other side of complexity.” ~ Oliver

Wendell Holmes

Over Architecting
● Good architecture gets out of the way

● Scope, time, cost. Pick 2

○ Rule of pi

● What are you not solving?

○ Simple robot, simple code

Over Architecting
● 80 : 20 rule. You should be 80% planned. 20% chaos.

● Simple works for processes too. Bug and work tracking.

● YAGNI

○ Uncertainty in requirements. Robots change (and should

change)!

● Empowerment.

Managing a project for success
● Management Structure

○ Students

○ Mentor(s)

● Task breakdown

○ How will you meet criteria

for success?

● Deadlines

○ Prioritization

● Inter-team and inter-project

communication

○ Progress and goals

● Future use

○ Documentation

Who are you writing it for?
● Can they use it without asking questions?

● Are they happy with the results?

● ALL of them?

How are you going to measure success?
● Measuring happiness alone doesn’t work!

● Measure your success

○ Measure when things go right

■ (Robots score, data entry was accurate, …)

○ Measure when things go wrong

■ (Robot hit a wall, data transfer corrupted records)

●

Write reusable Code
● Don’t rewrite everything every year

● Compartmentalize and modularize your code

○ What’s the purpose of each code group?

○ What are the interfaces to your code?

● But don’t over-architect!!!

Closing/Recap
● Have a software architecture

● Don’t over-architect

● Define what success is before you start

● Manage your project and team for success

● Know that your code will work

● Iterate, iterate, iterate (fail faster)

