

Strategic Design

Michael Corsetto

Training

Golden Rule #3

Steal From The Best, Invent The Rest

- Get Team familiar with past games and robots
- Games will often be similar to past games
 - Examples:
 - 2004, 2010, and 2013 climbing
 - 2007 and 2011
 - 2006 and 2012
 - Take advantage of this!
- Ask veteran teams questions about their past robots

Specialized Training

- Drivetrain Design
- Mechanism Design
- Electrical/pneumatic tips
- Programming goals

Analyzing the Game

- Know the game rules inside and out
- Consider every method of scoring points
 - 2008: driving laps
 - 2012: 118's bridge mechanism
- Consider every method of preventing opponents form scoring
 - 2000 & 2012: stealing balls
 - 2004: capping goals

Game Analysis cont.

- Deciding on most effective scoring method directly determines robot design
- Understanding the ranking system
 - 2012 co-opertition points
 - Win/loss/tie
 - Adding scores

Cost-Benefit

- Difficulty vs. points awarded
 - Is it worth it?
 - What is the most cost-efficient scoring method?
 - Values of goals vs. ease of scoring
 - Preventing 10 points is just as valuable as scoring 10 points

Simplicity

- Always build within your limits
- Know your capabilities
- It is better to have fewer well-functioning mechanisms than many poorly-functioning mechanisms
 - Quality over quantity
 - Occam's razor: the simplest solution is often the best

Tradeoffs

- Some games will make you choose between one function or another
 – E.g. 2013: climbing often limited other functions
- Complexity vs. durability
 - Our 2013 intake, worked great, not very durable
 - Our 2012 intake, worked okay, very durable

Versatility

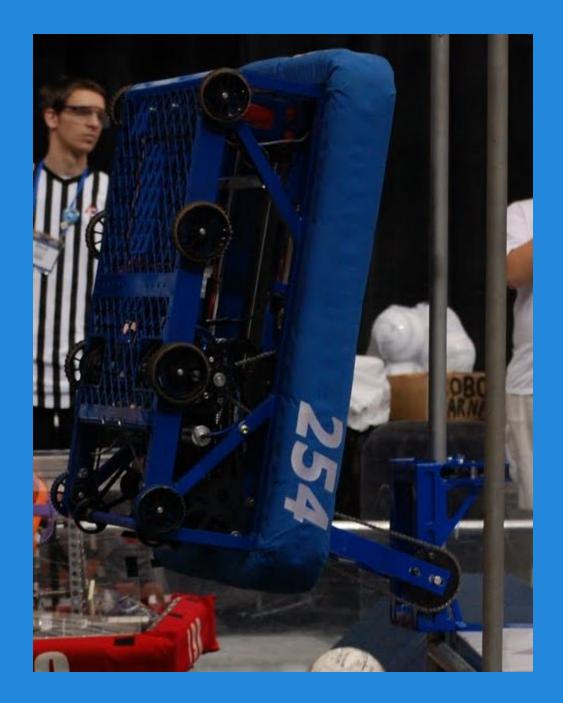
- Doing multiple functions with one mechanism is ideal.
 - Power-take off
 - Using intake as bridge manipulator
- Remember, your strategic priorities still dictate design. Limit sacrifice when improving versatility.

Prediction

- Predict what other teams will build
- What robots work well together?
- Predict realistic match scores
 - E.g. stacking in 2005 and 2003
 - Very few people predicted 250+ points matches in 2013

Stick to your guns

DRIVETRAIN DESIGN



Drivetrain Options

- Tank
 - 4 Wheel Drive
 - 6 Wheel Drive
 - 8 Wheel Drive
 - Treads
- Swerve
- Octanum
- Not Mecanum
- Not Omni

6 Wheel Tank

Golden Rule #1

- West Coast Drive
 - What is it?
- Why?
 - Proven design
 - Wide wheel base
 - Stable
 - Traction
 - Weight Saving
 - Room for electronics board
 - Space to mount structures

There's nothing that hasn't already been done

MECHANISM DESIGN

Basic Devices for Mechanisms

Motors

- Gearboxes
 - Single Speed Gearbox
 - Shifting Gearbox
 - Planetary Gearbox
- Power transfer
 - Gears, ring gears, belts, chain, direct drive
- Variable Movement

Basic Devices Cont.

- Pistons
 - Movement from point A to point B
 - non-variable
 - single or double position

Mechanism shapes

- KISS
- Minimum degrees of freedom
- . Low Center of Gravity
 - Especially Motors and Battery
- Symmetry when possible
- Inside the frame perimeter when possible
- Robust when outside the frame perimeter

You Need to Move Something

- How are you going to:
 - acquire it?
 - manipulate it?
 - store it?
 - lift it?
 - position it?
 - release it?

Acquisition Zone

- The acquisition zone is the effective intake area of the robot; the larger the better.
- How will the object react to the robot, field, intake device?
- Can the driver pick up an object 50ft away without a direct line of sight?

Continuous vs. Single Intake

Golden Rule #2

- Can objects hinder intake ability or movement?
- 2012 & 2013: Picking up multiple game pieces
- Continuous Intake = ROLLY GRABBERS
- Single Intake = Claw/Hook

Device Alignment

- How can you guarantee proper placement?
- Are there physical objects to orient the robot?
- Quick alignment is key to scoring efficiency and on field success!

The Basics of Manipulation

- Common FRC Objects
 - Balls
 - Tubes
 - Objects that are flush with the floor
- Keys
 - Volume of game piece
 - Speed of acquisition and release
- Rolly grabbers
 - They can pick up anything

Balls

Tubes

Discs

Electrical and Pneumatic Tips

- Electrical wiring in FRC is an art
- Look at teams like 254, 973, and 1538
 Do as they do
- Look at teams like 1678 in 2013
 - Don't do as they do
 - Cost us a match on Einstein

Programming

- Autonomous = huge points
 - 2011: autonomous = double points
 - 2013: 90 points possible, that is equivalent to a top tier robot scoring in tele-op,
 - 2013: 42 point auto and 10 point hang
 better than 18 point auto and 30 point hang
 - 2014: 65 point auto from 254
 - 2015: 2826 28 point, 3 tote, 3 RC auto

Keys to Good Programming

- Precision Autonomous Driving
 - Using encoders + gyro
- Camera Alignment
 - Faster scoring
- PID Loops for arms and driving accuracy
 - Ex. 2011 Tube Rack
- Bang Bang controller for shooter wheels
 Key in 2012 and 2013

The best 6 weeks of your life

Build season

Build Season Overview

- Accelerated Schedule is Important
- When setting schedule: "Aim for the Moon, Land among the Stars"
- Students ALWAYS assume there is more time than there is
- Often, Mentors do too!

Brainstorming and Kick-off day

- Understand the rules. Know the game inside and out.
- What?
 - What is our strategy? What will the robot do?
- . How?
 - How will the robot carry out this function?
- Why?
 - #winning

Rack n' Roll 2007

PRACTICE KICK-OFF

Game rules

- Scoring
 - central "spider" rack
 - 24 "legs"
 - 3 rows
 - 8 columns
- Robot restrictions and features

Scoring

- Tubes
 - 2 per leg
 - Keeper (auto only)
 - cannot be moved, spoiled, or covered
 - Ringer
 - cannot be moved, can be spoiled
 - Spoiler
 - Can be moved, negates covered tube
 - Exponential scoring

# tubes in row	1	2	3	4	5	6	7	8
Points	2	4	8	16	32	64	128	256

Scoring

- Ramp
 - Lift alliance partners off the ground
 - 4-12" 15 points
 - >12" 30 points

Robot restrictions and features

- 28"x38" starting footprint
 - Footprint does not apply during matches
- No detachable parts
- 4, 5, or 6' height depending on weight. 120, 110, or 100lbs respectively.
- Bumpers around perimeter during match operation
- Vision targets on scoring rack.

- Days 1 4
 - Brainstorming
- Day 5
 - Design Freeze
- Days 5 8
 - Prototyping
 - Drive-base electrical layout
- Days 5 14
 - Build drivetrain
 - Programmers begin code for drive train

- Days 8 14
 - Robot controls
 - Finish drivetrain
 - Crucial for other mechanisms and electronics
- Days 8 21
 - Mechanism construction
 - Programming
 - Finish drivetrain code

• Day 15

Begin testing autonomous code on drive train

- Days 22 28
 - Mechanism integration
 - Wiring

Weeks 5 & 6

- Day 29
 - Robot finished
- Days 29 40
 - Testing, fixing, refining, and perfecting
 - Driver training
 - A good driver always beats a good robot

The real deal

COMPETITION SEASON

The Biggest Lie in FRC

- Myth: build season is 6 weeks
- Reality: build season never ends

Withholding allowance

- Allowed to bring < 30 lbs of parts
- Keep parts to fine tune and bring to competition
 - Last resort, <u>do not rely on this!</u>
 - Installation of new parts takes up precious time in the pits
- Allowed to Add Components
 - Stingers in 2012

Practice robot

- Identical to competition robot

 If not full robot, copy of drive-base
- Large investment, large reward

Watch other Competitions

- Watch other regionals
 - Webcast parties (with pancakes!)
- Read Chief Delphi
- Volunteer at events
- Look at other robots for ideas
 - There is still time to re/design and add new parts

At the Competition

- Scouting
 - Qualitative and quantitative data
 - -1^{st} Pick offensive bot, 2^{nd} pick defensive bot
 - 1st pick: purely quantitative, who scores the most, who complements our strategy
 - 2nd pick: defense plus value added (non-tele-op score)
- Know your opponents. Match strategy depends on their abilities.
- Predict elimination draft. This is how we won Curie Division.

Pit Management

- Organization and cleanliness
 - You can't use tools that you can't find
 - Lots of metal shavings = lots of electrical failures
- Battery management
- Team member accessibility

Stay in contact in case we need you

Conclusion

Robots don't win competitions, teams do.

Questions?

