Design for Autonomous

Griffin Della Grotte

Special Thanks to Gautam and Krish from 5940

3 BREAD 5940 Design for Autonomous

About Me

e Advisor, Technical Mentor, and
Drive Coach for 5940

e System Engineer with Apple’s
Satellite Connectivity Group

(SOS via Satellite)
. . . Einstein 2022
e Security testing enthusiast
Ex Race Car driver ot
e New cat owner! S ~ 35 T datacontor

' Championship
FSAE
autocross drive
2018

Lovely [
kitty

Design for Autonomous

About this slide deck e o+

Number Name EPA Rank Normalized EPA EPA Auto EPA Q Teleop EPA Endgame EPA Record

6328 Mechanical 110 1721 55.5 224 27.9 5.2 47-23-1

Walk through the process of going Advantage

fro m n Oth i n g to a h ig h _ pe rfo rm a n Ce 1323 MadTown Robotics 1 2064 86.7 21.8 55.2 9.8 52-1-0
a UtonomOUS mode 2468 Team Appreciate 12 1840 66.3 21.6 37.1 7.7 53-9-3
[5940 BREAD 4 1937 5 20.7 45.6 8.9 40-9-0]
1771 % 120 1716 551 19.8 28 7.4 46-15-0
In other words: there’s more to a o DS
gOOd aUtO than fancy COde' 111 WildStang 6 1893 7141 19.7 425 8.9 38-5-1
1325 Inverse Paradox 23 1818 64.4 19.7 349 9.8 60-26-0
4678 CyberCavs 13 1834 65.8 19.5 39.5 6.8 46-8-0
2767 Stryke Force 18 1824 64.9 19.3 37.1 8 52-14-0

3 BREAD 5940 Design for Autonomous

Game release v

Table 6-2 CHARGED UP points

Awarded for... AUTO TELEOP Qual. Playoff
each ROBOT whose BUMPERS have
MOBILITY completely left its COMMUNITY at any 3
. point during AUTO
How should we think about the autonomous
scored on a bottom ROW 3 2
mode? What adva ntage can we ga|n? GAME PIECES scored on a middle ROW 4 3
. . . scored on a top ROW 6 5
e Bonus points available only during auto - 3 adjacent NODES in 3 ROW contain]
sy d GAME PIECES.
o Remember it's about the delta (mostly) seore
DOCKED and not .
. Each ROBOT (1 ROBOT max in AUTO 8 6
e Getting an early lead ENGAGED ()
DOCKED and)
Y A re th ere mo re? ENGAGED Each ROBOT (1 ROBOT max in AUTO) 12 10
—/
Each ROBOT whose BUMPERS are
PARK completely contained within its 2
COMMUNITY but does not meet the
criteria for DOCKED.
SUPERCHARGED each SUPERCHARGED NODE in a .
NODE completed set of ALLIANCE GRIDS

SUSTAINABILITY
BONUS

At least 6 LINKS scored.

1
Ranking
Point

Design for Autonomous

Game release

Short cycle for you, removal of short cycle for your opponent

3 BREAD 5940 Design for Autonomous

Game release

Good field positioning going into teleop

3 BREAD 5940 Design for Autonomous

Game release

Get a lead in the tiebreakers

Without new rules,
champs 2023 would
have been decided
on fouls or auto

C BREAD 5940

Order Sort Criteria
1= Ranking Score
g Average ALLIANCE MATCH points, not including FOULS
3rd ‘ Average ALLIANCE CHARGE STATION points

Unlikely to matter [4'*‘ ‘ Average ALLIANCE AUTO points]
5 ’ Random sorting by the FMS

Clean match = TIE
Full-grid + Triple = TIE
Better auto???

2023 Qualification Ranking

Order Sort Criteria

e Cumulative TECH FOUL points due to opponent rule violations

3 ALLIANCE AUTO points

2nd ‘ ALLIANCE CHARGE STATION points
|

4t MATCH is replayed

2023 Playoff Tiebreaker

Remember the pre-champs rules!!

Design for Autonomous

Field sketches + time estimates

Estimate how much is feasible to do in
those 15 seconds. When in doubt, play it
out!

Auto path in

This should let you know what the most Path Planner

anyone could do in auto will be.

2023 Chezy Champs “Human Match”

3 BREAD 5940 Design for Autonomous

https://docs.google.com/file/d/1N3Z9GnRk4N4vfwzL9OeGKtcg_As7IvpB/preview

Down-select your options

Which feasible auto routines do we want the
most? Which don’t matter much? What do you
need to best serve your alliance?

uals Playoffs
e Most matches, not much help e Playing with another very good
Maximize score with partners on robot
the field e \Who does what? How do these
e Reasonable to work around your modes complement each other?

partners

3 BREAD 5940 Design for Autonomous

Down-select your options (2023)

1.

3 Balance: Help enough to reach RP
threshold, other partners can score a
preload

3 No Balance over Bump: Playing with
someone that has a good smooth side auto
4 Toss + Balance: No help, but also likely
win, just trying to reach RP threshold

3 No Balance: Playing with a team that has
only a center balance, or balance works
well

Only Preload: Backup plan in case of
mechanical issues or miscommunication

2 Over Charge Station + Balance: Playing
with two very good teams

3 BREAD 5940 Design for Autonomous

Remember, FRC is a
game of alliances. The
more flexible you are,

the better you can
make your whole
alliancel!

Down-select your options (2022)

1. 5 Piece Right: Lots of points, leaves space
for your alliance members

2. 2 Piece Left: Secondary if playing with a
team with a good 5 piece.

3. 3 Piece Steal Left: Gotta get some extra
points somewhere

4. Only Preload: Backup plan in case of
mechanical issues or miscommunication

5. 6Pieee: Most points, but too hard on the
alliance.

3 BREAD 5940 Design for Autonomous

https://docs.google.com/file/d/14MFN-pkXGD3Z3EqCcaDxhnInNEMvrPmj/preview
http://www.youtube.com/watch?v=P0WHxtakJXM&t=6

Consider your robot architecture

Certain architectures help or hurt your chances.

B i ey

3 BREAD 5940 Design for Autonomous

http://www.youtube.com/watch?v=aFZy8iibMD0&t=20

Consider your robot architecture

Certain architectures help or hurt your chances.

3 BREAD 5940 Design for Autonomous

http://www.youtube.com/watch?v=IYvR26Vdgck&t=33

Consider your robot architecture

Certain architectures help or hurt your chances.

3 BREAD 5940 Design for Autonomous

http://www.youtube.com/watch?v=Yx3drL6_gKI&t=2

Consider your robot architecture

Certain architectures help or hurt your chances.

3 BREAD 5940 Design for Autonomous

https://docs.google.com/file/d/1qac3i2LBNTbybz3k_TtEak_Sm9NWPAr4/preview

Consider your robot architecture

These choices might make your autos easier to
achieve. Are the strictly necessary? Sometimes
not, sometimes yes.

3 BREAD 5940 Design for Autonomous

Implementation

C BREAD 5940

Layers of control

Autonomous Routine Script

Yo
AN

Robot State Machine Implementation

Y
AN

Absolute Location PID Control

Y
AN

Drive/Steer TalonFX PID Control Robot Localization Fusion
TalonFX Voltage Compensation Drivetrain Odometry Reverse Kinematics I AprilTag Detection
Effective Wheel Radius Calibration I Camera Calibration

Many layers of automation to make a great auto happen!

Every layer needs to do its job...

3 BREAD 5940 Design for Autonomous

Layers of control

Autonomous Routine Script

Yo
AN

Robot State Machine Implementation

Y
AN

Absolute Location PID Control

N

Drive/Steer TalonFX PID Control Robot Localization Fusion
TalonFX Voltage Compensation Drivetrain Odometry Reverse Kinematics I AprilTag Detection
[Effective Wheel Radius Calibration I Camera Calibration

Many layers of automation to make a great auto happen!

Every layer needs to do its job...

3 BREAD 5940 Design for Autonomous

Motor control

Drive/Steer TalonFX PID Control]

TalonFX Voltage Compensation }

Y

Many places to find pre-tuned values for your
swerve drive control loops. Other team’s code,
module supplier example code, CTRE’s new Suggested tests
Swerve wizard.

e Check the commanded position
closely matches the achieved
position of the swerve rotation
while driving.

e Run the robotin an automated
forward path some distance.
Check the achieved velocity of the
modules closely matches the
command.

Worth checking when you get driving! Are the
swerve modules actually achieving the setpoints
they’re given?

3 BREAD 5940 Design for Autonomous

Drive/Steer TalonFX PID Control }

Control Loop Options

TalonFX Voltage Compensation }

Y

Many different ways to implement PID control on
your motors. A couple notes / recommendations:

On TalonFX
1000Hz PID for Pos. or Vel.
Motion Profiling w/ Position PID

MotionMagic is and Phoenix 6 is

On SPARK PID control works! Beware low encoder count
1000Hz PID for Pos. or Vel. NEOs f it F ti fli
Motion Profiling w/ Velocity PID on s for position. For motion profiling, use
Rio + SPARK’s position PID.

On Rio Avoid if you can. Better to avoid sensor latency
Main loop at 50Hz, can do ~faster thread .
Arbitrary PID / profile / model ahd offloa-\d fas.t processing. Can often use
higher gains with the faster loop speeds.

3 BREAD 5940 Design for Autonomous

Control Loop Tuning
Depending on the performance you're looking

for, this can be easy or hard. Seconds (or less)

3 BREAD 5940 Design for Autonomous

https://docs.google.com/file/d/1EZtebA2IR8KkTGdokRkKskIg_SAPUkC2/preview
https://docs.google.com/file/d/1HL7xWGbllUPb-ebiBApwTKmFORYG0J9g/preview

Control Loop Tuning

(kG: Add fixed voltage to offset gravity in one direction)

kS: Add fixed voltage to offset static friction in the
direction of rotation

kV: Add voltage proportional to the desired profile
velocity

kA: Add voltage proportional to the desired profile
>acceleration

kP: Add voltage proportional to the closed-loop error

kl: Add voltage proportional to the accumulated
closed-loop error

kD: Add voltage proportional to the rate-of-change of

the closed-loop error

\ S

Drive/Steer TalonFX PID Control]

Y

TalonFX Voltage Compensation }

Feedforward

Output Voltage = kG + kS *
sign(v) + kV *v + kA *a + kP
*err + kl * accum-err-sec +
kD * err/sec

Feedback

C BREAD 5940

Design for Autonomous

Control Loop Tuning

Drive/Steer TalonFX PID Control]

kG: Add fixed voltage to offset gravity in one direction

Y

TalonFX Voltage Compensation }

kS: Add fixed voltage to offset static friction in the

direction of rotation GravityType Gravity Feedforward Type
kV: Add voltage proportional to the desired profile A elts) rpsis Lt L LSRR
ve locity kb Volts/ A error-rotations Derivative Gain

kG \olts Gravity Feedforward Gain

kA: Add voltage proportional to the desired profile

acceleration kI Volts/accumulated-error-rotations Integral Gain

. kP Volts / error-rotations Proportional Gain
kP: Add voltage proportional to the closed-loop error
kS Volts Static Feedforward Gain
kl: Add voltage proportional to the accumulated
ge prop kv Volts/rps Velocity Feedforward Gain

closed-loop error
Available PID contents in Phoenix 6

kD: Add volt tional to the rate-of-ch f
Vottage proportionat to the rate-of-change o (Units for MotionMagicVoltage)

the closed-loop error

3 BREAD 5940 Design for Autonomous

Drive/Steer TalonFX PID Control]

Control Loop Tuning (KG & kS)

1. Find your gravity offset (if needed, like for an arm)
a. Increase kG until your mechanism supports
its own weight without moving

Y

TalonFX Voltage Compensation }

b. Increase kG more until the mechanism oravikylyee Gravity Feedforward Type
accelerates against gravity kA Volts / rps/s Acceleration Feedforward Gain
c. Center of that range is kG, half the width of kb Volts /A error-rotations S B

that range is kS.
2. If no gravity offset is needed, can find kS on it’s
own in a similar way.

kG \olts Gravity Feedforward Gain

kI Volts/accumulated-error-rotations ntegral Gain

kP Volts/ error-rotations Proportional Gain
. . . ks Volts Static Feedforward Gain
Starting point? Do a hand-calc to find the voltage
needed to sustain the torque required. VRS fe e onand nee
Take care of the input and outputs on these functions. In Available PID contents in Phoenix 6
Phoenix 6, we can choose a couple options. (Units for MotionMagicVoltage)

Recommend start with MotionMagicVoltage so the
outputs are “voltage compensated” for variable robot
battery.

3 BREAD 5940 Design for Autonomous

Drive/Steer TalonFX PID Control }

Control Loop Tuning (kV)

Y

1. Find the velocity coefficient LELIIR AL E D Sl e]

a. Adjust until the motion profile roughly
matches the setpoint

GravityType Gravity Feedforward Type
kA Volts/ rps/s Acceleration Feedforward Gain
. . . . kp Volts/ A error-rotations foati ;
The mechanism will not actually drive to its end Denvative Gan
position at this point, but when traversing the profile, it kG Volts Gravity Feedforward Gain
should be close! kI Volts/accumulated-error-rotations ntegral Gain
Starting point? Direct translation from motor free speed 40 VOIS CREHOEIES Propertional Gain
per vo lt. kS Volts Static Feedforward Gain
kv Volts/rps Velocity Feedforward Gain

Available PID contents in Phoenix 6
(Units for MotionMagicVoltage)

3 BREAD 5940 Design for Autonomous

Control Loop Tuning (kV)

C BREAD 5940

Design for Autonomous

Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

Y

Looking to get the cruise portion (the
linear increase portion) of the blue
line and red line parallel.

Drive/Steer TalonFX PID Control }

Control Loop Tuning (kV)

TalonFX Voltage Compensation }

Y

Line lags behind blue until
overshooting at the end, this is OK for

now!

3 BREAD 5940 Design for Autonomous

Control Loop Tuning (kA)

1. Find the acceleration coefficient (if needed)
a. Add to the coefficient in order to help the
mechanism accelerate and decelerate at the
start and end of the profile

The mechanism will not actually drive to its end
position at this point, but when traversing the profile, it
should be close!

Many mechanisms will not need this. Only comes into
play when you're really pushing limits. We
implemented this manually last year.

C BREAD 5940

Drive/Steer TalonFX PID Control]

Y

TalonFX Voltage Compensation }

GravityType Gravity Feedforward Type

kA Volts/ rps/s

Acceleration Feedforward Gain

kb Volts/ A error-rotations Derivative Gain

kG \olts Gravity Feedforward Gain

kI Volts/accumulated-error-rotations ntegral Gain

kP Volts / error-rotations Proportional Gain

kS Volts Static Feedforward Gain

kv Volts/rps Velocity Feedforward Gain

Available PID contents in Phoenix 6
(Units for MotionMagicVoltage)

Design for Autonomous

Control Loop Tuning (kA)

C BREAD 5940

Design for Autonomous

Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

Y

~— A

kA brings overshoot and lag into
check, but some position error
remains

Drive/Steer TalonFX PID Control]

Control Loop Tuning (kP)

1. Find the proportional gain
a. Add more P until you see oscillations,
back off.

Y

TalonFX Voltage Compensation }

. . GravityType Gravity Feedforward Type
b. The control will already look quite
. . . kA Volt - i
good if you did the previous steps welll olts /rps/s L
kb Volts/ A error-rotations Derivative Gain
Motion profiled control loops can handle higher P K6 Volts I ——

terms because the error values ever presented

kI Volts/accumulated-error-rotations ntegral Gain
should be smaller.

kP Volts / error-rotations Proportional Gain
kS Volts Static Feedforward Gain
Golden rule of controls: If you know something kv Volts/rps Velocity Feedforward Gain

about the system, tell the controller!
Available PID contents in Phoenix 6

This is the “magic” of motion profiles. The (Units for MotionMagicVoltage)
mechanism cannot accelerate instantaneously, or

go arbitrarily fast.

3 BREAD 5940 Design for Autonomous

Drive/Steer TalonFX PID Control }

Control Loop Tuning (kP)

Y

TalonFX Voltage Compensation }

kP handles remaining position error

3 BREAD 5940 Design for Autonomous

Drive/Steer TalonFX PID Control }

Control Loop Tuning (ki & kD)

1. FindthelandD terms
a. Setthem to zero. Done =

Y

TalonFX Voltage Compensation }

Haven’t used a non-zero | term on an FRC GravityType Gravity Feedforward Type
mechanism for as long as | can remember. We use kA Volts/rps/s Acceleration Feedforward Gain
D sometimes, but it's usually for non-profiled PID kb \Volts/ A error-rotations Derivative Gain
controllers. kG \olts Gravity Feedforward Gain

kI Volts/accumulated-error-rotations ntegral Gain

Our swerve module drive motors have a kD that is A Vel erer-motEiens Proportional Gain
two orders of magnitude lower than the kP. Steer kS Volts Static Feedforward Gain
motors are running no kD. kv Volts /rps Velocity Feedforward Gain

Available PID contents in Phoenix 6
(Units for MotionMagicVoltage)

3 BREAD 5940 Design for Autonomous

Drive/Steer TalonFX PID Control

Control Loop Tuning

All of this is done visually, plotting achievement vs. setpoint TalonFX Voltage Compensation

Tabs Window Help
Log_22-12-16_10-01-36.wpilog — AdvantageScope P X > +
w | ~\Line Graph | ¥t Odometry m
2100 | a5
1400 ' - a4
700 / \ H 3s
0 +— — : 3
s . \
\ f 1
700 \ H 25
\ | !
\ :
-1400 \ ' 2
X (Rt
2100 ‘\‘ a e e T %5 74291013 74291713 74292412 74293112 74293.813 74294512 74295212 74295912 74296612 74297.312 74298393 74299.602 74300.302
-2100 4 \ ' \
\ 1] \
X / ! A Time
2800 \, / ' L 1
\ / | Mo
\ A | \
-3500 \ o ' — 05
: ENABLED OUTPUT: 0.028
-4200 — o
\ 1 Proportion of supply voltage to apply in fractional units between -1 and +1
-4300 4 i 05 DutyCycleOut Min ° Max
i) -10)
Jm_— B
-5600 -1
190s 1955 200s 2055 2105 2155 2205 2255 Subilyces 0 0
EnableFOC
Left Axis Discrete Fields Right Axis Appivl) S Apply

@ [RealOutputs/Odometry/Robot/0
» 295.3595107167606

@ /RealOutputs/Odometry/Robot/1
»~1907.9421357035285

C BREAD 5940

X | @ [DriverStation/Enabled
true

X

X | @ ModoDriveDistanceMeters
1.9119084833756663

@ /Mod1/DriveDistanceMeters
1.9324183125789829

© [Mod2/DriveDistanceMeters
19235664619328352

@® /Mod3/DriveDistanceMeters

»1QN2ARAIRIRIANAIA

OverrideRrake

X X X X

Design for Autonomous

Server Version: 2024.0.0 (Jul 31 2023, 19:41:04)

Layers of control

Autonomous Routine Script

Yo
AN

Robot State Machine Implementation

Y
N

Absolute Location PID Control

Drive/Steer TalonFX PID Control Robot Localization Fusion
TalonFX Voltage Compensation Drivetrain Odometry Reverse Kinematics AprilTag Detection
Effective Wheel Radius Calibration Camera Calibration

3 BREAD 5940 Design for Autonomous

AprilTag Detection]

Cameras

Y)

Camera Calibration]

Lens calibration and positional calibration can be
easy to miss. Lens first!

Positional calibration

e Start with the true offsets

e Try close to your tags and far
from your tags

e \Verify the detected camera
position (and robot position by
proxy) is correct. Adjust if not.

e Camera angle has a large effect
only at far distances.

e Bad lens cal — wacky pos. cal

3 BREAD 5940 Design for Autonomous

https://docs.google.com/file/d/1_gtXg-HRwEP282y_eAsAY46qOcelGQcW/preview

Layers of control

Yo

Autonomous Routine Script

Robot State Machine Implementation

AN

Y

Absolute Location PID Control

I\

Y

Drive/Steer TalonFX PID Control

Robot Localization Fusion

AN

Y

TalonFX Voltage Compensation

Drivetrain Odometry Reverse Kinematics I

AprilTag Detection

N

C BREAD 5940

|
|
[

Effective Wheel Radius Calibration]

Camera Calibration

AN

Design for Autonomous

Earpet [a“bratlon [Effective Wheel Radius Calibration]

Determine what the rolling radius of your wheels are

Test Procedure

e Autonomously drive a fixed
distance at low acceleration

e Record the distance travelled
reported by the sensors

e Measure the true distance
travelled

e (Calculate rolling radius of
wheels

3 BREAD 5940 Design for Autonomous

Layers of control

Autonomous Routine Script

Robot State Machine Implementation

Absolute Location PID Control

—

Drive/Steer TalonFX PID Control

Robot Localization Fusion

TalonFX Voltage Compensation

R e G

Drivetrain Odometry Reverse Kinematics I

AprilTag Detection

C BREAD 5940

|
|
[

Effective Wheel Radius Calibration I

Camera Calibration

AN

Design for Autonomous

Path FOIIUWEI— pID [Absolute Location PID Control]

Path following usually implemented with a separate
PID controller for X, Y, and rotation, yielding velocity
commands for the swerve system.

Test Procedure

e |Increase P term until jitter
occurs during path following

e Do this before adding in vision
to the robot localization, as that
can also introduce oscillations

We usually just give it as high a P term as can be
sustained without inducing oscillations. Look to other
team’s code base for their choice!

3 BREAD 5940 Design for Autonomous

Layers of control

Autonomous Routine Script

Yo
AN

Robot State Machine Implementation

Y
N

Absolute Location PID Control

Y

Drive/Steer TalonFX PID Control [Robot Localization Fusion]
TalonFX Voltage Compensation I Drivetrain Odometry Reverse Kinematics I AprilTag Detection J
[Effective Wheel Radius Calibration I Camera Calibration }

3 BREAD 5940 Design for Autonomous

Se nsor FUSIO“ [Robot Localization Fusion]

Tune how the robot handles combining swerve
odometry data with camera measurements. Really
just tuning which data is “trusted” more.

Test Procedure

e Observe the “jitter” in your pose
estimation. More trust in vision
will lead to more jitter. Less
trust will lead to less accuracy.

® Increase your trust in your
vision measurements until the
jitter becomes unacceptable for
path following

Can do more scientific measurements on the
actual StdDev in your vision measurements, but
we got better performance just tweaking it, so
we’'ll probably skip that part completely now.

3 BREAD 5940 Design for Autonomous

Layers of control

Autonomous Routine Script

Robot State Machine Implementation

Absolute Location PID Control
(Drive/Steer TalonFX PID Control i Robot Localization Fusion |
i TalonFX Voltage Compensation T Drivetrain Odometry Reverse Kinematics I AprilTag Detection |
[Effective Wheel Radius Calibration I Camera Calibration |

3 BREAD 5940 Design for Autonomous

“Application Code”

Autonomous Routine Script]

Y

Many different ways to script the robot actions that ReleB S MEane }

take place during an autonomous routine, see what
works best for you.

This isn’t “performance” code. You can write the same
auto many different ways at this point. Looking for
something that is reasonable to read, and reasonable
to tweak.

3 BREAD 5940 Design for Autonomous

o /* System States x/ .

State Machlne public enum SuperstructureState { Robot State Machine
PRE_HOME,
HOMING,

Complex robot procedures i

defined through sequence PRERARE. T0_THAGH,
THROWING, /** System states x/

of states. FLOOR_INTAKE_CUBE,

public enum ElevatorArmSystemStates {
SINGLE_SUBSTATION_CONE,

HP_INTAKE_CONE, STARTING_CONFIG,
“gi " C HP_INTAKE_CONE_INTER, NEUTRALIZING_ARM,
ignals” provide input to SPIT_CUBE_FRONT,
how the driver or FRERARE_10_SR4T, HOFIRGy
: SPIT, IDLE,
autonomous routine wants EXIT_SPIT, T
the robot to change action PRE_PLACE_PLECE_LOW, =
PRE_PLACE_CUBE, }
PRE_PLACE_CONE,
EXHAUSTING_PIECE_LOW, public enum FloorIntakeStates {
Can only transition from E’L‘iauigige-w“' IDLE,
certain states into other PULL_OUT_CONE, CLOSED_LOOP
StateS FLOOR_INTAKE_CONE_A,
FLOOR_INTAKE_CONE_B,
FLOOR_INTAKE_CONE_C }

3 BREAD 5940 Design for Autonomous

State MaChlnE [Robot State Machine }

FLOOR_INTAKE
_CONE_A

FLOOR_INTAKE
_CONE_B

FLOOR_INTAKE
_CONE_C

3 BREAD 5940 Design for Autonomous

https://docs.google.com/file/d/1B2eV2CFl9O1eWwLdccfsddMXnC-w_pXB/preview

StatE MaChlne [Robot State Machine }

} else if (systemState == SuperstructureState.FLOOR_INTAKE_CONE_A) {
// Outputs
eps o . . FLOOR_INTAKE
endEffector.idling(); Start lifting the intake if the current "CONE_A

if (floorIntake.getRollerCurrent() > 55.8) { Suggests aconeisinit
floorIntake.requestClosedLoop(-0.75, —-2.373046875);

} else {
floorIntake.requestClosedLoop(-0.75, 154.0);

FLOOR_INTAKE

_CONE_B
}
elevatorArmLowLevel.requestDesiredState (ELEVATOR_IDLE_POSE, ARM_IDLE_POSE, goSlow);
IT Transttions Transition once the intake is lifted and FLOOR_INTAKE
i ' _CONE_C
if (!requestFloorIntakeCone) { roller Jammed by a cone

nextSystemState = SuperstructureState.IDLE;
} else if (floorIntake.getAngle() < 120.0 && floorIntake.getRollerRPM() > -500.0 &&
nextSystemState = SuperstructureState.FLOOR_INTAKE_CONE_B;

3 BREAD 5940 Design for Autonomous

StatE MaChlne [Robot State Machine

Extend elevator out, rotate arm in
} else if (systemState == SuperstructureState.FLOOR_INTAKE_CONE_B) {

// Outputs

if (elevatorArmLowLevel.getState()[0] > 0.4) {
elevatorArmLowlLevel.requestDesiredState(0.5, 24.67578125, goSlow);

} else { Different arm rotation depending on the position of the elevator
elevatorArmLowlLevel.requestDesiredState(0.5, 90.0, goSlow);

}

floorIntake.requestClosedLoop(-0.75, -2.373046875);

endEffector.intakeCone();

// Transitions Transition once elevator + arm reaches end of travel
if (elevatorArmLowLevel.atArmSetpoint(24.67578125) && elevatorArmLowLev
nextSystemState = SuperstructureState.FLOOR_INTAKE_CONE_C;
} else if (!requestFloorIntakeCone) {
nextSystemState = SuperstructureState.IDLE;

3 BREAD 5940 Design for Autonomous

FLOOR_INTAKE
_CONE_A

FLOOR_INTAKE
_CONE_B

FLOOR_INTAKE
_CONE_C

StatE MaChlne Robot State Machine

} else if (systemState == SuperstructureState.FLOOR_INTAKE_CONE_C) {
// Outputs
elevatorArmLowLevel.requestDesiredState(0.15, 24.67578125, goSlow);
if (elevatorArmLowLevel.atElevatorSetpoint(0.15)) {
floorIntake.requestClosedLoop(0.15, 0.0);

. NN Start spitting out the cone only
floorIntake.requestClosedloop(-0.75, -2.373046875); once the arm is fully in position

FLOOR_INTAKE
_CONE_A

}
endEffector.intakeCone();

if (endEffector.getBeamBreakTriggered() &% !beamBreakTriggerTimeStarted) {

beamBreakTriggerTimeStarted = true; FLOOR_'NTAKE
beamBreakTriggerTimer.reset(); CONE_B
beamBreakTriggerTimer.start();

Timing logic for how long the tusk
if (lendEffector.getBeamBreakTriggered()) { beam-break has been triggered

beamBreakTriggerTimer.reset();

beamBreakTriggerTimer.stop(); FLOOR_INTAKE
beamBreakTriggerTimeStarted = false; _CONE_C

// Transitions
if (!requestFloorIntakeCone) {

nextSystemState = SuperstructureState.IDLE;
} else if (beamBreakTriggerTimer.get() > 0.1) {

nextSystemState = SuperstructureState.IDLE; Do no:t transrtlon unl'ess. the tUSkS S|gnal
requestFloorIntakeCone = false; there IS actually a cone in them

Design for Autonomous

StatE MaChlne [Robot State Machine }

} else if (systemState == SuperstructureState.IDLE) {

// Outputs
elevatorArmLowlLevel.requestDesiredState (ELEVATOR_IDLE_POSE, ARM_IDLE_POSE, goSlow);
if (elevatorArmLowlLevel.atElevatorSetpoint(ELEVATOR_IDLE_POSE) && elevatorArmLowlLeve FLOOR_INTAKE
if (endEffector.getBeamBreakTriggered()) { -CONE_A
endEffector.holdCone(); <= Different current limit for different gamepiece
} else {
endEffector.holdCube();
FLOOR_INTAKE
¥ _CONE_B

}
floorIntake.requestClosedLoop(0.0, INTAKE_IDLE_POSITION);
currentTriggerTimerStarted = false;

FLOOR_INTAKE

// Transitions _CONE_C

if (requestHome) { <= Big transition statement out of IDLE
nextSystemState = SuperstructureState.PRE_HOME;

} else if (requestFloorIntakeCube) {
nextSystemState = SuperstructureState.FLOOR_INTAKE_CUBE;

} else if (requestHPIntakeCone) {

3 BREAD 5940 Design for Autonomous

State MaChlnE [Robot State Machine }

FLOOR_INTAKE
_CONE_A

FLOOR_INTAKE
_CONE_B

FLOOR_INTAKE
_CONE_C

3 BREAD 5940 Design for Autonomous

https://docs.google.com/file/d/1B2eV2CFl9O1eWwLdccfsddMXnC-w_pXB/preview

RO utlne Scrl Dt [Autonomous Routine Script }

public OnePieceBalanceMode(Swerve swerve, Superstructure superstructure) {

addRequirements(swerve, superstructure);

addCommands (

new
new
new
new
new
new
new
new
new
new
new

InstantCommand(() -> swerve.requestPercent(new ChassisSpeeds(@, 0, @), false)),
InstantCommand(() -> superstructure.requestPreScore(Level.HIGH, GamePiece.CONE)),
WaitUntilCommand(() -> superstructure.atElevatorSetpoint(ELEVATOR_PRE_CONE_HIGH)),
InstantCommand(() -> superstructure.requestScore()),

WaitUntilCommand(() -> superstructure.atElevatorSetpoint(ELEVATOR_CONE_PULL_OUT_HIGH)),
WaitCommand(9.3),

InstantCommand(() -> superstructure.requestIdle()),
TrajectoryFollowerCommand(Robot.onePieceBalanceA, () —-> Robot.twoPieceBalanceA.getInitial
WaitCommand(1.0),

TrajectoryFollowerCommand(Robot.onePieceBalanceB, swerve, true),

RunCommand(() -> swerve.requestPercent(new ChassisSpeeds(9, 9, 0), false))

3 BREAD 5940 Design for Autonomous

RO UtII'IE Scrl Dt Autonomous Routine Script

public ThreePieceFloorConeMode(Superstructure superstructure, Swerve swerve) {

addRequirements(superstructure, swerve);
addCommands (
new InstantCommand(() -> swerve.requestPercent(new ChassisSpeeds(9, @, 0), false)),
new InstantCommand(() -> superstructure.requestPreScore(Level.HIGH, GamePiece.CONE)),
new WaitUntilCommand(() -> superstructure.atElevatorSetpoint(ELEVATOR_PRE_CONE_HIGH)), Score a cone high
new InstantCommand(() -> superstructure.requestScore()),
new WaitUntilCommand(() -> superstructure.atElevatorSetpoint(ELEVATOR_CONE_PULL_OUT_HIGH)),
new WaitCommand(@.4),
new TrajectoryFollowerCommand(Robot.threePieceFloorConeA, () —> Robot.threePieceSlowA.getInitialHolonomicPose()

new RunCommand(() —> superstructure.requestFloorIntakeCone()) Intake a cone While driVing
out and back

new InstantCommand(() -> superstructure.requestFloorIntakeCone()),
new TrajectoryFollowerCommand(Robot.threePieceFloorConeB, swerve, true),

new AutoPlaceCommand(swerve, superstructure, () -> GamePiece.CONE, () —-> Level.MID).until(() -> superstructure.gl Score a cone mid W/ Vision

new TrajectoryFollowerCommand(Robot.threePieceFloorConeC, swerve, true).raceWith(
new RunCommand(() -> superstructure.requestFloorIntakeCube(() -> 0.0))

new InstantCommand(() -> superstructure.requestFloorIntakeCube(() -> 1.0)), Intake a CUbe Whlle dI’IVIng

new TrajectoryFollowerCommand(Robot.threePieceSlowD, swerve, true).alongWith(new SequentialCommandGroup (

new WaitCommand(1.5), OUt and baCk

new InstantCommand(() -> superstructure.requestPreScore(Level.HIGH, GamePiece.CUBE))

new InstantCommand(() -> superstructure.requestScore()),

new WaitCommand(0.5),

new InstantCommand(() -> superstructure.requestIdle()), Score CUbe

new WaitCommand(0.1),

new TrajectoryFollowerCommand(Robot.threePieceSlowSetup, swerve, false),

new RunCommand(() -> swerve.requestPercent(new ChassisSpeeds(@, @, @), false)) D . . 3
rive to midfield

3 BREAD 5940 Design for Autonomous

Autonomous Routine Script

3 BREAD 5940 Design for Autonomous

https://docs.google.com/file/d/1qac3i2LBNTbybz3k_TtEak_Sm9NWPAr4/preview

Layers of control

Autonomous Routine Script

Yo
AN

Robot State Machine Implementation

Y
N

Absolute Location PID Control

Y
N

Drive/Steer TalonFX PID Control Robot Localization Fusion
TalonFX Voltage Compensation Drivetrain Odometry Reverse Kinematics I AprilTag Detection
Effective Wheel Radius Calibration I Camera Calibration

3 BREAD 5940 Design for Autonomous

Layers of control

(= mmmm e e e e e e e e e e e - - - - -

Autonomous Routine Script I

}___J

Robot State Machine Implementation

Absolute Location PID Control

Drive/Steer TalonFX PID Control Robot Localization Fusion

TalonFX Voltage Compensation Drivetrain Odometry Reverse Kinematics AprilTag Detection

Effective Wheel Radius Calibration Camera Calibration

Almost all of this can be done before the season starts!

3 BREAD 5940 Design for Autonomous

Strategies for Success

e |[fit's possible to do it before the season, do it before the season.

e Think critically about what you should do in auto

e Resist the temptation to move higher in the layer stack.

e Tune graphically. You don’t need a PhD to control a mechanism well.

e |[fit doesn't work every time in your shop, it probably won’t work half
the time on the field. Test unforgivingly.

e Be skeptical of hardware problems. Code rarely “just stops working” if

it wasn't updated.

3 BREAD 5940 Design for Autonomous

Discussion!

3 BREAD 5940 Design for Autonomous

