Design for Autonomous Griffin Della Grotte

Special Thanks to Gautam and Krish from 5940

About Me

- Advisor, Technical Mentor, and Drive Coach for 5940
- System Engineer with Apple's Satellite Connectivity Group (SOS via Satellite)
- Security testing enthusiast
- Ex Race Car driver
- New cat owner!

Einstein 2022

Behind the fence-line of some datacenter

Lovely kitty

பீ BREAD 5940

About this slide deck

Walk through the process of going from nothing to a high-performance autonomous mode.

In other words: there's more to a good auto than fancy code.

Team Insights

Number	Name	EPA Rank	Normalized EPA	EPA	Auto EPA 🔽	Teleop EPA	Endgame EPA	Record
6328	Mechanical Advantage	110	1721	55.5	22.4	27.9	5.2	47-23-1
1323	MadTown Robotics	1	2064	86.7	21.8	55.2	9.8	52-1-0
2468	Team Appreciate	12	1840	66.3	21.6	37.1	7.7	53-9-3
5940	BREAD	4	1937	75.1	20.7	45.6	8.9	40-9-0
1771	North Gwinnett Robotics	120	1716	55.1	19.8	28	7.4	46-15-0
3005	RoboChargers	5	1907	72.4	19.7	45.6	7.1	58-12-0
111	WildStang	6	1893	71.1	19.7	42.5	8.9	38-5-1
1325	Inverse Paradox	23	1818	64.4	19.7	34.9	9.8	60-26-0
4678	CyberCavs	13	1834	65.8	19.5	39.5	6.8	46-8-0
2767	Stryke Force	18	1824	64.9	19.3	37.7	8	52-14-0

How should we think about the autonomous mode? What advantage can we gain?

- Bonus points available only during auto
 - Remember it's about the delta (mostly)
- Getting an early lead
- Are there more?

Award	Awarded for	AUTO	TELEOP	Qual.	Playoff
MOBILITY	each ROBOT whose BUMPERS have completely left its COMMUNITY at any point during AUTO	3			
	scored on a bottom ROW	3	2		
GAME PIECES	scored on a middle ROW	4	3		
	scored on a top ROW	6	5		
LINK	3 adjacent NODES in a ROW contain scored GAME PIECES.		5		
DOCKED and not ENGAGED	Each ROBOT (1 ROBOT max in AUTO)	8	6		
DOCKED and ENGAGED	Each ROBOT (1 ROBOT max in AUTO)	12	10		
PARK	Each ROBOT whose BUMPERS are completely contained within its COMMUNITY but does not meet the criteria for DOCKED.		2		
SUPERCHARGED each SUPERCHARGED NODE in a NODE completed set of ALLIANCE GRIDS			3		
SUSTAINABILITY BONUS	At least 6 LINKS scored.			1 Ranking Point	

Short cycle for you, removal of short cycle for your opponent

🗂 BREAD 5940

Good field positioning going into teleop

🗂 BREAD 5940

Get a lead in the tiebreakers

Without new rules, champs 2023 would have been decided on fouls or auto

2023 Playoff Tiebreaker

Remember the pre-champs rules!!

Field sketches + time estimates

Estimate how much is feasible to do in those 15 seconds. When in doubt, play it out!

This should let you know what the most *anyone* could do in auto will be.

2023 Chezy Champs "Human Match"

Down-select your options

Which feasible auto routines do we want the most? Which don't matter much? What do you need to best serve your alliance?

<u>Quals</u>

- Most matches, not much help
- Maximize score with partners on the field
- Reasonable to work around your partners

Playoffs

- Playing with another very good robot
- Who does what? How do these modes complement each other?

Down-select your options (2023)

- 1. **3 Balance**: Help enough to reach RP threshold, other partners can score a preload
- 2. **3 No Balance over Bump**: Playing with someone that has a good smooth side auto
- 3. **4 Toss + Balance**: No help, but also likely win, just trying to reach RP threshold
- 4. **3 No Balance**: Playing with a team that has only a center balance, or balance works well
- 5. **Only Preload**: Backup plan in case of mechanical issues or miscommunication
- 6. **2 Over Charge Station + Balance**: Playing with two very good teams

Remember, FRC is a game of *alliances*. The more flexible you are, the better you can make your whole alliance!

Down-select your options (2022)

- 1. **5 Piece Right**: Lots of points, leaves space for your alliance members
- 2. **2 Piece Left**: Secondary if playing with a team with a good 5 piece.
- 3. **3 Piece Steal Left**: Gotta get some extra points somewhere
- 4. **Only Preload**: Backup plan in case of mechanical issues or miscommunication
- 5. **6 Piece**: Most points, but too hard on the alliance.

🗂 BREAD 5940

Certain architectures help or hurt your chances.

Certain architectures help or hurt your chances.

🗂 BREAD 5940

Certain architectures help or hurt your chances.

🗂 BREAD 5940

Certain architectures help or hurt your chances.

These choices might make your autos easier to achieve. Are the strictly necessary? Sometimes not, sometimes yes.

Implementation

Layers of control

Autonomous Routine Script				
Robot State Machine Implementation				
Absolute Location PID Control				
Drive/Steer TalonFX PID Control	Robot Localization Fu	sion		
TalonFX Voltage Compensation Drivetrain Odometry Reverse Kinematics AprilTag Detection				
Effective Wheel Radius Calibration Camera Calibration				

Many layers of automation to make a great auto happen!

Every layer needs to do its job...

Layers of control

Autonomous Routine Script				
Robot State Machine Implementation				
Absolute Location PID Control				
Drive/Steer TalonFX PID Control	Robot Localization Fu	sion		
TalonFX Voltage Compensation Drivetrain Odometry Reverse Kinematics AprilTag Detection				
Effective Wheel Radius Calibration Camera Calibration				

Many layers of automation to make a great auto happen!

Every layer needs to do its job...

Motor control

Many places to find pre-tuned values for your swerve drive control loops. Other team's code, module supplier example code, CTRE's new Swerve wizard.

Worth checking when you get driving! Are the swerve modules actually achieving the setpoints they're given?

Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

Suggested tests

- Check the commanded position closely matches the achieved position of the swerve rotation while driving.
- Run the robot in an automated forward path some distance. Check the achieved velocity of the modules closely matches the command.

Control Loop Options

Many different ways to implement PID control on your motors. A couple notes / recommendations:

Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

<u>On TalonFX</u>

- 1000Hz PID for Pos. or Vel.
- Motion Profiling w/ Position PID

On SPARK

- 1000Hz PID for Pos. or Vel.
- Motion Profiling w/ Velocity PID

<u>On Rio</u>

- Main loop at 50Hz, can do ~faster thread
- Arbitrary PID / profile / model

MotionMagic is 👍 and Phoenix 6 is 👍

PID control works! Beware low encoder count on NEOs for position. For motion profiling, use Rio + SPARK's position PID.

Avoid if you can. Better to avoid sensor latency and offload fast processing. Can often use higher gains with the faster loop speeds.

🗂 BREAD 5940

Depending on the performance you're looking for, this can be easy or hard. Seconds (or less) Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

🗂 BREAD 5940

kG: Add fixed voltage to offset gravity in one direction

kS: Add fixed voltage to offset static friction in the direction of rotation

 ${\bf kV}$: Add voltage proportional to the desired profile velocity

kA: Add voltage proportional to the desired profile acceleration

kl: Add voltage proportional to the accumulated closed-loop error

kD: Add voltage proportional to the rate-of-change of the closed-loop error

Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

Feedforward

Output Voltage = kG + kS * sign(v) + kV * v + kA * a + kP * err + kI * accum-err-sec + kD * err/sec

Feedback

🖞 BREAD 5940

kG: Add fixed voltage to offset gravity in one direction

kS: Add fixed voltage to offset static friction in the direction of rotation

 ${\bf kV}$: Add voltage proportional to the desired profile velocity

kA: Add voltage proportional to the desired profile acceleration

kP: Add voltage proportional to the closed-loop error

kl: Add voltage proportional to the accumulated closed-loop error

kD: Add voltage proportional to the rate-of-change of the closed-loop error

Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

Grav	vityType	Gravity Feedforward Type
kA	Volts / rps/s	Acceleration Feedforward Gain
kD	Volts / Δ error-rotations	Derivative Gain
kG	Volts	Gravity Feedforward Gain
kI	Volts / accumulated-error-rotations	Integral Gain
kP	Volts / error-rotations	Proportional Gain
kS	Volts	Static Feedforward Gain
kV	Volts / rps	Velocity Feedforward Gain

Available PID contents in Phoenix 6 (Units for MotionMagicVoltage)

BRFAD 5940

Control Loop Tuning (kG & kS)

- 1. Find your gravity offset (if needed, like for an arm)
 - a. Increase kG until your mechanism supports its own weight without moving
 - b. Increase kG more until the mechanism accelerates against gravity
 - c. Center of that range is **kG**, half the width of that range is **kS**.
- 2. If no gravity offset is needed, can find kS on it's own in a similar way.

Starting point? Do a hand-calc to find the voltage needed to sustain the torque required.

Take care of the input and outputs on these functions. In Phoenix 6, we can choose a couple options. Recommend start with MotionMagicVoltage so the outputs are "voltage compensated" for variable robot battery.

Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

Grav	vityType	Gravity Feedforward Type
kA	Volts / rps/s	Acceleration Feedforward Gain
kD	Volts / Δ error-rotations	Derivative Gain
kG	Volts	Gravity Feedforward Gain
kI	Volts / accumulated-error-rotations	Integral Gain
kP	Volts / error-rotations	Proportional Gain
kS	Volts	Static Feedforward Gain
kV	Volts / rps	Velocity Feedforward Gain

Available PID contents in Phoenix 6 (Units for MotionMagicVoltage)

🗂 BREAD 5940

Control Loop Tuning (kV)

- 1. Find the velocity coefficient
 - a. Adjust until the motion profile roughly matches the setpoint

The mechanism will not actually drive to its end position at this point, but when traversing the profile, it should be close!

Starting point? Direct translation from motor free speed per volt.

Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

Grav	vityType	Gravity Feedforward Type
kA	Volts / rps/s	Acceleration Feedforward Gain
kD	Volts / Δ error-rotations	Derivative Gain
kG	Volts	Gravity Feedforward Gain
kI	Volts / accumulated-error-rotations	Integral Gain
kP	Volts / error-rotations	Proportional Gain
kS	Volts	Static Feedforward Gain
kV	Volts / rps	Velocity Feedforward Gain

Available PID contents in Phoenix 6 (Units for MotionMagicVoltage)

Control Loop Tuning (kV)

Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

Looking to get the cruise portion (the linear increase portion) of the blue line and red line parallel.

பீ BREAD 5940

Control Loop Tuning (kV)

Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

Line lags behind blue until overshooting at the end, this is OK for now!

பீ BREAD 5940

Control Loop Tuning (kA)

- 1. Find the acceleration coefficient (if needed)
 - Add to the coefficient in order to help the mechanism accelerate and decelerate at the start and end of the profile

The mechanism will not actually drive to its end position at this point, but when traversing the profile, it should be close!

Many mechanisms will not need this. Only comes into play when you're really pushing limits. We implemented this manually last year. Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

Gra	vityType	Gravity Feedforward Type
kA	Volts / rps/s	Acceleration Feedforward Gain
kD	Volts / Δ error-rotations	Derivative Gain
kG	Volts	Gravity Feedforward Gain
kI	Volts / accumulated-error-rotations	Integral Gain
kP	Volts / error-rotations	Proportional Gain
kS	Volts	Static Feedforward Gain
kV	Volts / rps	Velocity Feedforward Gain

Available PID contents in Phoenix 6 (Units for MotionMagicVoltage)

🗂 BREAD 5940

Control Loop Tuning (kA)

Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

kA brings overshoot and lag into check, but some position error remains

பீ BREAD 5940

Control Loop Tuning (kP)

- 1. Find the proportional gain
 - a. Add more P until you see oscillations, back off.
 - b. The control will already look quite good if you did the previous steps well!

Motion profiled control loops can handle higher P terms because the error values ever presented should be smaller.

Golden rule of controls: If *you* know something about the system, tell the controller!

This is the "magic" of motion profiles. The mechanism cannot accelerate instantaneously, or go arbitrarily fast.

Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

Grav	vityType	Gravity Feedforward Type
kA	Volts / rps/s	Acceleration Feedforward Gain
kD	Volts / Δ error-rotations	Derivative Gain
kG	Volts	Gravity Feedforward Gain
kI	Volts / accumulated-error-rotations	Integral Gain
kI kP	Volts / accumulated-error-rotations Volts / error-rotations	Integral Gain Proportional Gain
kI kP kS	Volts / accumulated-error-rotations Volts / error-rotations Volts	Integral Gain Proportional Gain Static Feedforward Gain

Available PID contents in Phoenix 6 (Units for MotionMagicVoltage)

Control Loop Tuning (kP)

	\SET	POLNI			
	ACH	IEVED			
				la se se se	
$\epsilon \rightarrow +$			· · · · · ·		
· V·					
· 🔨 ·	• • • •		· · · / · · · ·		
$\epsilon \rightarrow +$			/		
		· · · · · /			
1	Mennal general en en de en en el en en				
· · ·					 Company of the second sec

Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

kP handles remaining position error

🗂 BREAD 5940

Control Loop Tuning (kI & kD)

- 1. Find the I and D terms
 - a. Set them to zero. Done 🙂

Haven't used a non-zero I term on an FRC mechanism for as long as I can remember. We use D sometimes, but it's usually for non-profiled PID controllers.

Our swerve module drive motors have a kD that is two orders of magnitude lower than the kP. Steer motors are running no kD. Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

Gra	vityType	Gravity Feedforward Type
kA	Volts / rps/s	Acceleration Feedforward Gain
kD	Volts / Δ error-rotations	Derivative Gain
kG	Volts	Gravity Feedforward Gain
kI	Volts / accumulated-error-rotations	Integral Gain
kP	Volts / error-rotations	Proportional Gain
kS	Volts	Static Feedforward Gain
kV	Volts / rps	Velocity Feedforward Gain

Available PID contents in Phoenix 6 (Units for MotionMagicVoltage)

BREAD 5940

Drive/Steer TalonFX PID Control

TalonFX Voltage Compensation

All of this is done visually, plotting achievement vs. setpoint

Layers of control

Autonomous Routine Script				
Robot State Machine Implementation				
Absolute Location PID Control				
Drive/Steer TalonFX PID Control	Drive/Steer TalonFX PID Control Robot Localization Fusion			
TalonFX Voltage Compensation	Drivetrain Odometry Reverse Kinematics	AprilTag Detection		
Effective Wheel Radius Calibration Camera Calibration				

Cameras

Lens calibration and positional calibration can be easy to miss. Lens first!

Positional calibration

- Start with the true offsets
- Try close to your tags and far from your tags
- Verify the detected camera position (and robot position by proxy) is correct. Adjust if not.
- Camera angle has a large effect only at far distances.
- Bad lens cal \rightarrow wacky pos. cal

AprilTag Detection

Camera Calibration

Layers of control

Autonomous Routine Script		
Robot State Machine Implementation		
Absolute Location PID Control		
Drive/Steer TalonFX PID Control	Robot Localization Fusion	
TalonFX Voltage Compensation	Drivetrain Odometry Reverse Kinematics	AprilTag Detection
	Effective Wheel Radius Calibration	Camera Calibration

Carpet Calibration

BREAD 5940

Determine what the rolling radius of your wheels are

Effective Wheel Radius Calibration

Test Procedure

- Autonomously drive a fixed distance *at low acceleration*
- Record the distance travelled reported by the sensors
- Measure the true distance travelled
- Calculate rolling radius of wheels

Layers of control

Autonomous Routine Script		
Robot State Machine Implementation		
Absolute Location PID Control		
Drive/Steer TalonFX PID Control	Robot Localization Fusion	
TalonFX Voltage Compensation	Drivetrain Odometry Reverse Kinematics	AprilTag Detection
	Effective Wheel Radius Calibration	Camera Calibration

Path Follower PID

Path following usually implemented with a separate PID controller for X, Y, and rotation, yielding velocity commands for the swerve system.

We usually just give it as high a P term as can be sustained without inducing oscillations. Look to other team's code base for their choice!

<u>Test Procedure</u>

- Increase P term until jitter occurs during path following
- Do this before adding in vision to the robot localization, as that can also introduce oscillations

Layers of control

Autonomous Routine Script		
Robot State Machine Implementation		
Absolute Location PID Control		
Drive/Steer TalonFX PID Control	Robot Localization Fusion	
TalonFX Voltage Compensation	Drivetrain Odometry Reverse Kinematics	AprilTag Detection
	Effective Wheel Radius Calibration	Camera Calibration

Robot Localization Fusion

Sensor Fusion

Tune how the robot handles combining swerve odometry data with camera measurements. Really just tuning which data is "trusted" more.

Can do more scientific measurements on the actual StdDev in your vision measurements, but we got better performance just tweaking it, so we'll probably skip that part completely now.

Test Procedure

- Observe the "jitter" in your pose estimation. More trust in vision will lead to more jitter. Less trust will lead to less accuracy.
- Increase your trust in your vision measurements until the jitter becomes unacceptable for path following

🗂 BREAD 5940

Layers of control

Autonomous Routine Script		
Robot State Machine Implementation		
Absolute Location PID Control		
Drive/Steer TalonFX PID Control	Robot Localization Fusion	
TalonFX Voltage Compensation	Drivetrain Odometry Reverse Kinematics	AprilTag Detection
	Effective Wheel Radius Calibration	Camera Calibration

"Application Code"

Many different ways to script the robot actions that take place during an autonomous routine, see what works best for you.

This isn't "performance" code. You can write the same auto many different ways at this point. Looking for something that is reasonable to read, and reasonable to tweak. Autonomous Routine Script

Robot State Machine

Complex robot procedures defined through sequence of states.

"Signals" provide input to how the driver or autonomous routine wants the robot to change action

Can only transition from certain states into other states

BREAD 5940

/* System States */ public enum SuperstructureState { PRE HOME, HOMING, IDLE, PREPARE_TO_THROW, THROWING, FLOOR_INTAKE_CUBE, SINGLE SUBSTATION CONE, HP INTAKE CONE, HP_INTAKE_CONE_INTER, SPIT_CUBE_FRONT, PREPARE TO SPIT, SPIT, EXIT_SPIT, PRE PLACE PIECE LOW, PRE_PLACE_CUBE, PRE_PLACE_CONE, EXHAUSTING_PIECE_LOW, EXHAUSTING_CUBE, SLAM_CONE, PULL_OUT_CONE, FLOOR_INTAKE_CONE_A, FLOOR_INTAKE_CONE_B, FLOOR_INTAKE_CONE_C

Robot State Machine

/** System states */ public enum ElevatorArmSystemStates { STARTING_CONFIG, NEUTRALIZING_ARM, HOMING, IDLE, FOLLOWING_SETPOINT } public enum FloorIntakeStates { IDLE, CLOSED_LOOP

Design for Autonomous

}

}

Robot State Machine

BRFAD 5940

Extend elevator out, rotate arm in

} else if (systemState == SuperstructureState.FLOOR_INTAKE_CONE_B) {

// Outputs

```
if (elevatorArmLowLevel.getState()[0] > 0.4) {
```

elevatorArmLowLevel.requestDesiredState(0.5, 24.67578125, goSlow);

} else { Different arm rotation depending on the position of the elevator
 elevatorArmLowLevel.requestDesiredState(0.5, 90.0, goSlow);

```
}
```

```
floorIntake.requestClosedLoop(-0.75, -2.373046875);
endEffector.intakeCone();
```

- // Transitions Transition once elevator + arm reaches end of travel
- if (elevatorArmLowLevel.atArmSetpoint(24.67578125) && elevatorArmLowLevel.atArmSetpoint(24.67578125) & elevatorArmSetpoint(24.67578125) & elevatorArmSe

```
} else if (!requestFloorIntakeCone) {
```

```
nextSystemState = SuperstructureState.IDLE;
```


FLOOR_INTAKE _CONE_A

🗂 BREAD 5940

}

// Outputs

}

BRFAD 5940

} else if (systemState == SuperstructureState.FLOOR INTAKE CONE C) {

```
elevatorArmLowLevel.requestDesiredState(0.15, 24.67578125, goSlow);
if (elevatorArmLowLevel.atElevatorSetpoint(0.15)) {
   floorIntake.requestClosedLoop(0.15, 0.0);
                                                     Start spitting out the cone only
} else {
                                                     once the arm is fully in position
   floorIntake.requestClosedLoop(-0.75, -2.373046875);
}
endEffector.intakeCone();
if (endEffector.getBeamBreakTriggered() && !beamBreakTriggerTimeStarted) {
   beamBreakTriggerTimeStarted = true;
   beamBreakTriggerTimer.reset();
   beamBreakTriggerTimer.start();
3
                                            Timing logic for how long the tusk
                                            beam-break has been triggered
if (!endEffector.getBeamBreakTriggered()) {
   beamBreakTriggerTimer.reset();
   beamBreakTriggerTimer.stop();
   beamBreakTriggerTimeStarted = false;
}
// Transitions
if (!requestFloorIntakeCone) {
   nextSystemState = SuperstructureState.IDLE;
} else if (beamBreakTriggerTimer.get() > 0.1) {
                                             Do not transition unless the tusks signal
   nextSystemState = SuperstructureState.IDLE;
                                             there is actually a cone in them
   requestFloorIntakeCone = false;
```


🗂 BREAD 5940

Robot State Machine

Routine Script

public OnePieceBalanceMode(Swerve swerve, Superstructure superstructure) {
 addRequirements(swerve, superstructure);

```
addCommands(
```

);

BRFAD 5940

```
new InstantCommand(() -> swerve.requestPercent(new ChassisSpeeds(0, 0, 0), false)),
```

new InstantCommand(() -> superstructure.requestPreScore(Level.HIGH, GamePiece.CONE)),

```
new WaitUntilCommand(() -> superstructure.atElevatorSetpoint(ELEVATOR_PRE_CONE_HIGH)),
```

```
new InstantCommand(() -> superstructure.requestScore()),
```

```
new WaitUntilCommand(() -> superstructure.atElevatorSetpoint(ELEVATOR_CONE_PULL_OUT_HIGH)),
new WaitCommand(0.3),
```

```
new InstantCommand(() -> superstructure.requestIdle()),
```

new TrajectoryFollowerCommand(Robot.onePieceBalanceA, () -> Robot.twoPieceBalanceA.getInitia]
new WaitCommand(1.0),

```
new TrajectoryFollowerCommand(Robot.onePieceBalanceB, swerve, true),
```

```
new RunCommand(() -> swerve.requestPercent(new ChassisSpeeds(0, 0, 0), false))
```

Routine Script

Routine Script

Autonomous Routine Script

Layers of control

Autonomous Routine Script		
Robot State Machine Implementation		
Absolute Location PID Control		
Drive/Steer TalonFX PID Control	Robot Localization Fusion	
TalonFX Voltage Compensation	Drivetrain Odometry Reverse Kinematics	AprilTag Detection
	Effective Wheel Radius Calibration	Camera Calibration

Layers of control

Autonomous Routine Script		
Robot State Machine Implementation		
Absolute Location PID Control		
Drive/Steer TalonFX PID Control	Robot Localization Fusion	
TalonFX Voltage Compensation	Drivetrain Odometry Reverse Kinematics	AprilTag Detection
	Effective Wheel Radius Calibration	Camera Calibration

Almost all of this can be done before the season starts!

Strategies for Success

- If it's possible to do it before the season, do it before the season.
- Think critically about what you *should* do in auto
- Resist the temptation to move higher in the layer stack.
- Tune graphically. You don't need a PhD to control a mechanism well.
- If it doesn't work every time in your shop, it probably won't work half the time on the field. Test unforgivingly.
- Be skeptical of hardware problems. Code rarely "just stops working" if it wasn't updated.

Discussion!

