
2022
scouting whitepaper

Table of contents

Introduction 4

History 4

Summary of Major Changes Since 2021 5

System Overview 6

Pit Collection 6

List of Data Points 7

Pictures 7

Naming Photos and JSON Files 8

Starred Teams to Organize Multiple Scouts 8

Flagging Multiple Teams 8

Highlighting to Show Scouting Progress 8

Match Collection 9

Objective Collection 10

Randomizing Scout IDs 11

Starting Positions 11

Simple UI 11

Climb Popups 12

Incap Time 13

Intakes 13

QR Schema/Complexity of the QR 13

Subjective Collection 14

Quickness and Driver Awareness 15

Defense Checkbox 15

Other 15

Retrieving QRs from Previous Matches 15

Citrus Circuits | 2022 scouting whitepaper

Server 16

Schema 16

Testing 17

QR Blocklisting 17

Collecting Climb Data 17

Using CSVs or JSONs 17

Calculations 18

Subjective Data 18

Picklist Calculations 18

Scout Precision Ranking 19

Device Data Pulling 20

Viewer 20

Navigation 20

Robot Images 20

Match Details 21

Starred Matches 22

Team In Match Data Graphs 23

User Preferences 24

Last Four Matches 25

Field Map and Pit Map 26

Rankings for Specific Data Points 27

Data Refreshing 27

Reading from Web Server and Authentication 27

Predicted vs. Actual Scores and Ranking Points in Match Schedule 28

Strategist Notes 28

Live Picklist 28

Citrus Circuits | 2022 scouting whitepaper

Picklist Editor 30

Team Rank Ordering 30

Sidebar 31

Team Performance Comparison Graphs 32

Removing teams from the Picklist 32

Updating Data Points Used in the Ranking Process 33

Operational Steps 33

Google Apps Script 33

Future Updates 33

Video System 34

Appendices 34

Appendix A: Production Schedule 34

Appendix B: How to Run a 1678 System Test 35

Appendix C: SPR Calculation Walkthrough 36

Appendix D: Subteam Structure 37

Appendix E: Competition Roles 37

Appendix F: Resources 38

Appendix G: Starting a Scouting System 39

Appendix H: Hardware 39

Appendix I: Codebook 40

What We Learned 50

Citrus Circuits | 2022 scouting whitepaper

Introduction
History
Citrus Circuits’ electronic scouting system was first developed and used during the 2013 FRC
season of Ultimate Ascent. The team had previously used a paper scouting system but was
overwhelmed by the management issues that arose when scouting 100 teams at the World
Championship. A software development team of four students created the original system that
has since grown into a full subteam of 20 students and multiple apps.

The system had two relatively unique attributes: (1) collection using Android tablets of both
objective scoring—each focused on a single robot—and subjective ordinal rankings of robots’
driving strengths and abilities within each match alliance; and (2) delivery of collected and
processed data to a cell phone app in near real time to be used by the drive team to prepare
for matches. The objective and subjective data were quantitatively combined using weighted
scoring to provide two ranked priority draft lists for first and second picks for alliance selection
prior to the playoffs.

The system proved successful in its initial use at the 2013 Central Valley Regional when 1678
was able to fully assemble an alliance based on collected scouting data to win the event from
the 6th seed. The system again proved its worth at the Championship where 1678 won the
Curie Division. The entire system ran at events with eight Scouts and two programmers.

The scouting system has evolved in several ways, including a couple of “hiccups.” Initially, the
system was cobbled together and then switched to Bluetooth in 2014. The first significant
revision occurred in 2015 with the first multi-object game presented by FIRST. However, the
scouting system failed to provide usable data at the first event of the year. In 2016, the
Software Scouting team created a project management schedule that delivered substantial
improvements to the system. Another app was added in 2016 to collect specific data from pit
visits. In 2017, the crew of Scouts was expanded to assign three Scouts to each robot for
collecting objective data to improve accuracy. In 2018, Bluetooth became less reliable with the
prevalence of smartphones at events, and QR code communication was added for match data
collection.

In 2020, the Match Collection, Pit Collection, and Viewer apps were rewritten in Kotlin for use
on Android phones. The system has relied on several online database programs, adopting
Firebase and then moving to MongoDB in 2020. At the first competition in 2020, the system did
not deliver data, but the season was terminated by the COVID-19 pandemic before the system
was updated further. In 2021, the subteam continued to meet remotely and work on making
improvements to the structure of the 2020 system without the need to focus on a specific
game. The 2022 system is a result of a substantial revision and improvement from the 2020
system.

Citrus Circuits | 2022 scouting whitepaper

Summary of Major Changes Since 2021
From 2021, the Viewer application now has a live picklist editor, team in match data, ranking by
data point, team details graphs, a field map, a pit map, and robot pictures. Most of these
features existed in the Viewer prior to Kotlin redevelopment in 2020, and their basic
functionality was taken and improved for the current app. For detailed descriptions of these
features, see the Viewer section.

At the end of the 2021 season, the Viewer application was still unable to retrieve updates from
the MongoDB server, and also could not update without resetting the entire application. During
the offseason, the primary goal was to have complete communication from collection to
processing, and finally, to visualization. After having difficulties with MongoDB Realm and
KMongo (a Kotlin-MongoDB plugin), the subteam decided to create a web API—nicknamed
“Cardinal”—to access data from the cloud database and host it for the Viewer. For more
information on Cardinal, see the 2021 Whitepaper.

During the 2022 season, the Server added a calculation for approximately measuring the
accuracy of Scouts, known as SPR (Scout Precision Ranking). This calculation had been a part
of previous years’ Server calculations, but was removed because it was unreliable. This year, a
new formula was designed to avoid the flaws of the previous method.

System Overview
The Citrus Circuits scouting system is broken up into three main stages: collection, processing,
and visualization. Collection consists of the Match Collection app and the Pit Collection app. In
the processing stage, the Server organizes and runs calculations on the data, which the Viewer
app and the Picklist Editor can then visualize by pulling the data through Cardinal.

At competitions, Scouts use two collection apps: the Match Collection app and the Pit
Collection app. Each app contains two “modes” for users to input either objective or subjective
data.

The users of the two collection apps are as follows:

○ Match Collection (Objective): Scouts

○ Match Collection (Subjective): Super Scouts

○ Pit Collection (Objective): Pit Scout (same as Match Strategist)

○ Pit Collection (Subjective): Team members focused on 1678’s alliance partners

■ This mode was not implemented this year for reasons mentioned in the
next section.

Citrus Circuits | 2022 scouting whitepaper

https://www.citruscircuits.org/uploads/6/9/3/4/6934550/2021_whitepaper.pdf

Pit Collection
The Pit Collection app is mainly used by the Match Strategist with the assistance of other
strategists (depending on the competition). It runs on Android phones and was built using
Kotlin and XML, and is used to record mechanical data and to take pictures of robots’
mechanisms. In past years, there was also a subjective mode used by a pit group focused on
1678’s alliance partners, in which they could record how feasible it would be to install a new
mechanism on a team (“cheesecaking”). It was removed this year because strategists decided
they did not need subjective pit information.

List of Data Points
The Pit Collection app is used to collect a number of data points about the physical
characteristics of a robot. These include whether or not the robot can climb, if it has ground
intake, if it can move under the low bar, if it has a camera for vision on the far side of the field,
what kind of drivetrain it has, what kind of drivetrain motors it has, and the number of drivetrain
motors.

Pit Collection main team data collecting screen

Citrus Circuits | 2022 scouting whitepaper

Pictures
The Pit Scouts also take a picture for each robot’s intake, indexer, shooter, climber, drivetrain,
and two pictures of the full robot from different angles. These pictures are taken in the app
using the phone camera and stored in the local Downloads folder to be pulled by the Server
computer via a USB connection.

Taking pictures of the different parts of the robot

Naming Photos and JSON Files
The data that is collected is stored as JSON files in the downloads folder along with the pictures.
For objective data, each file is named with its team number followed by _obj_pit. Subjective
files are named the same way, except they use _subj_pit instead of _obj_pit. The pictures
are named with the team number first and then what part of the robot it is a picture of. For
example, 1678_indexer.jpg or 0000_shooter.jpg.

Starred Teams to Organize Multiple Scouts
In order to organize scouting teams with multiple Pit Scouts, if a user long clicks on a team’s
cell in the list of teams, a yellow star will appear on the left side of that cell. This way, Pit
Scouts can divide the teams between each other. Rather than starring teams in a range, Pit
Scouts star teams one-by-one to allow for nonnumerical pit setup orders.

Citrus Circuits | 2022 scouting whitepaper

Flagging Multiple Teams
Flagging allows users to copy and paste a list of teams that meet set conditions. For instance,
developers might set a certain drivetrain as a flag, then all the teams with that drivetrain will be
saved to the clipboard to be pasted in a Slack channel. Conditions are set while developing the
app, not in the app by users.

Highlighting to Show Scouting Progress
When looking at the list of teams, the color of each team’s cell depends on what kind of data
has already been collected on that team. If there is no data on a team the cell will be white, if
there are only pictures the cell will be pink, if there is only data the cell will be yellow, and if
there is both pictures and data the cell will be green.

List of teams in Pit Collection with some teams starred or highlighted to show scouting
progress

Citrus Circuits | 2022 scouting whitepaper

Match Collection
The Match Collection app is used by Scouts in the stands during matches to collect robot
performance data. It runs on Lenovo Android tablets and was built in Kotlin and XML. There are
two modes of the Match Collection app: objective collection and subjective collection. In each
match there are 18 Objective Scouts (three per robot) and two Super Scouts (one per alliance).
Objective mode collects quantitative data (for example, how many balls a robot scores).
Subjective mode is used to rank the performance of each robot on the alliance (for example,
the field awareness ability between the robots on the Red alliance).

Objective/Subjective selection screen

Citrus Circuits | 2022 scouting whitepaper

Objective Collection

Objective Collection information input screen

Randomizing Scout IDs
In previous years, each Scout ID was always assigned to the same driver station position in
each match. This year, to increase scouting accuracy, Scout assignments to robots were
randomized. Groups of three students Scout each one of the six robots, then the groups of
Scouts who are scouting the same robot are shuffled for the next match. This structure
prevents Scouts from always scouting the same team as each other, so Scouts can be better
compared to one another and against the data on The Blue Alliance to rank the accuracy of
each Scout (see Scout Precision Ranking (SPR) in Server). The assignment order is determined
via a file resource with 100+ randomized orders of Scout IDs, which is generated ahead of
competition. Randomization is not done in real time.

Starting Positions
Before the main activity screen, Scouts must input their robot’s starting position, which is
based on subdivisions of the Tarmac. Starting position and the number of balls a team scored
in auto gives strategists a hint at what autos a team may have, without Scouts drawing out a
path or another complex solution.

Citrus Circuits | 2022 scouting whitepaper

Starting position screen red alliance

Simple UI
During week one, the different areas teams scored from, common penalties (e.g. scoring the
wrong colored ball), and other pieces of extra data were also collected—but the large quantity
of options caused inaccurate data and the extra data was unused. Most of these features were
removed and the app was limited to nine buttons that tracked scored high, scored low, intake,
incap, climbing, and other very simple actions (see the screenshots). At later competitions,
after the extra buttons were removed, scouting accuracy increased and Scouts found the
decrease in buttons much easier and were able to wait longer between breaks.

Citrus Circuits | 2022 scouting whitepaper

Objective Match Collection screen for Scouts before and after starting a match

Climb Popups
During Endgame, Scouts input the climbing level via a popup with four buttons: failed to climb,
low climb, mid climb, high climb, and traversal climb. Originally, Scouts also collected climb
time, but the metric was not always accurate due to the variety of climbs and Scouts having
difficulty knowing when a robot stopped climbing. After the first competition, Scouts collected
only the climb level and climb time (which is harder to scout) was noted down by the Stands
Strategists (see Competition Roles for more information).

Citrus Circuits | 2022 scouting whitepaper

Climb popup for recording climb level during endgame

Incap Time
Incapacitation (incap) is defined as a period of time when a robot is dead on the field or having
enough mechanical issues that it is unable to accomplish any actions. A toggle button notes
down the start/stop timestamps for when a robot goes incap. When the data is processed,
Server finds the difference in times between the timestamps to find the total time incap during
a match, which is later combined to create the average time incap and the number of matches
a team was incap. If a team is incap for less than 8 seconds, the incap time is considered
inconsequential in the overall match turnout and Server calculations disregard it.

Intakes
Scouts track intakes by clicking counter buttons that display the current number. Strategists
also used intakes to judge whether a defense robot has the ability to intake opponent balls in a
timely manner.

QR Schema/Complexity of the QR
QRs follow a specific formatting defined in Schema to lower the amount of data that needs to
be displayed. Data point names are represented by letters of the alphabet and each section
and data point is separated by special symbols such as ‘$’. This way, the QRs are easily
generated and are small enough that all match data can be contained in one relatively small QR
code.

QR code generator screen

Citrus Circuits | 2022 scouting whitepaper

Subjective Collection

Subjective Collection information input screen

Quickness and Driver Awareness
Super Scouts rank each robot on an alliance—relative to the other robots on the alliance—by
quickness and driver awareness. Ranks are from 1 to 3, with 3 indicating the best robot in that
category on the alliance. Quickness is based on the maximum speed and maneuverability of
the robot, while driver awareness is based on how much the driver is aware of the positions of
their robot and other robots on the field.

Defense Checkbox
In addition to ranking data points, Super Scouts also fill out a simple checkbox about whether
or not a robot played defense. This provides a simple estimate of a team’s experience playing
defense. It also helps identify matches to review for defense performance during the picklist
meeting.

Citrus Circuits | 2022 scouting whitepaper

Subjective Collection team data input screen

Other
Retrieving QRs from Previous Matches
In the case that an objective or subjective Scout fails or misses scanning their QR, Match
Collection has a method of storing and retrieving QRs. After the app generates each QR, its
compressed string is also stored in a file in the Downloads folder of the tablet. If a Scout
forgets to scan their QR, they can press the Old QRs button on the Team Assignment Screen to
see a list of all the QRs from previous matches scouted on that tablet, and display each one by
tapping on its cell. The QR is generated from the string pulled from the file in the tablet’s
Downloads folder.

Citrus Circuits | 2022 scouting whitepaper

Objective scouts Subjective scouts

Allows scouts to edit information before generating QR code

Server
During a competition, the Server works in tandem with the Scouts to provide accurate data to
the strategists. As matches continue, the Scouts collect data which is calculated in different
forms and then sent to the Viewer app. Raw and calculated data are stored in a local MongoDB
database on a designated laptop, and are uploaded to a cloud database after every match. For
more information on databases, see Section 4.1.6.1 Local and Cloud Databases in the 2020
Whitepaper.

In the past, there were difficulties with sending data to the Viewer, so a new component was
added to the system in the offseason. Now, data is sent through a web server (nicknamed
Cardinal) hosted by a mentor. Cardinal reads data from the cloud database and provides an
API for the Viewer to read it. For more information, see the Cardinal section of the 2021
Whitepaper.

Schema
Schema provides the database structure for the Scouting System. Schema files contain
important information about all data fields calculated by the Server. Having all the data fields in
Schema makes it extremely easy for developers to change them. Throughout the season, the
data fields that are collected and calculated are constantly changing. The ability to change all
the data field information in Schema (such as weighting) ensures that only minimal changes
need to be made to the code itself. During competition, strategists may want to change the

Citrus Circuits | 2022 scouting whitepaper

https://www.citruscircuits.org/uploads/6/9/3/4/6934550/whitepaper_2020.pdf
https://www.citruscircuits.org/uploads/6/9/3/4/6934550/whitepaper_2020.pdf
https://www.citruscircuits.org/uploads/6/9/3/4/6934550/2021_whitepaper.pdf
https://www.citruscircuits.org/uploads/6/9/3/4/6934550/2021_whitepaper.pdf

weighting of certain data fields, and storing data point information in the schema means that
the changes are able to be made easily and quickly.

Testing
Most Server code has automated testing written for it using the pytest and unittest libraries.
These tests are stored in a test folder alongside the src folder. Each calculation and script file
has a corresponding test file. PRs that change code in the src folder also update the respective
test files, which are reviewed during code reviews in place of user tests. A GitHub action
automatically tests each PR when it is opened and displays whether it succeeds or passes.

Automated testing provides several advantages. Previously, it was difficult to standardize the
environment in which code was run, leading to code that would function on one developer’s
device but fail on another. Tests also serve as documentation for the main code, acting as an
example of how it should run. The automatic GitHub action ensures that each PR is functional
before it is merged. Running tests with pytest is also convenient, since it allows parts of the
Server to run in isolation. To test the entire Server, a field test is normally conducted (see
Appendix B).

QR Blocklisting
If for any reason, a QR that has been inputted into the system needs to be removed, it is
blocklisted rather than deleting the raw data. A QR may be blocklisted if a Scout missed a large
portion of the match, leading to the data being inaccurate, or if a match gets replayed.
Blocklisting a QR will not delete it from the database, but will flag it so its data is ignored by
calculations. Calculations need to be rerun after blocklisting the QR to get accurate data. For
more information, see Section 4.1.7.1 QR Handling in the 2020 Whitepaper.

Collecting Climb Data
In previous years, climb data was gathered from the TBA API. However, TBA reports robots
who didn’t climb but were awarded a free climb due to a foul as having climbed normally.
Because of this, Scouts collected climb data this year in order to ensure optimal accuracy.

Using CSVs or JSONs
Previously, the Server stored information about an event’s team list and match schedule in CSV
files. This year, due to several reasons, that was changed to store team lists and match
schedules in JSON files. Firstly, JSON files are easier to read than CSV files. JSON also has
more versatility and is better for handling larger amounts of data.

CSVs are still used in some parts of the system. In order to send data to the Picklist Editor, the
Server exports data from the local database as a CSV file. Robot images are also uploaded to
Imgur, an online image hosting system, and the image URLs are exported into a CSV to be
imported into the Picklist Editor.

Citrus Circuits | 2022 scouting whitepaper

https://www.citruscircuits.org/uploads/6/9/3/4/6934550/whitepaper_2020.pdf

Calculations
Data processing is split into multiple calculation files, each for a different category of data.
Each calculation file has its respective schema file and collection in the database. All
calculations are subclasses of the parent class BaseCalculations, which contains methods
used by most or all calculations. Each calculation subclass has a run() method which checks
for the newest changes to the database, calls the other methods within the class to create
updated data, and then writes the changes to its collection. The server.py imports these
calculations in the order listed in calculations.yml and simply calls the run function to execute
the calculation. For more information on specific calculations, see Section 4.1.7.2
Consolidation and Objective TIM Calcs in the 2020 Whitepaper.

Subjective Data
In the past, subjective data was sent in QRs and stored in the database as Alliance In Match
(AIM) data, with each database document storing a ranked list of three teams. This year, the
structure was changed to split each team into its own document in the database, with values
between 1 and 3 to represent its subjective rankings. This was done to allow Super Scouts to
occasionally assign two teams to the same ranking if it was impossible to distinguish between
their driver skills. Data for all three teams in an alliance is still sent together in a single AIM QR,
which is split into three subjective TIM documents during decompression. This also allowed
Super Scouts to collect information about individual teams which was not a ranking, such as
whether or not they played defense.

Picklist Calculations
Pickability is a metric that allows teams to be pre-sorted before strategists discuss and refine
the picklist order. Each team has a first and second pickability, which approximates their
suitability as a first pick and a second pick respectively. Pickability is calculated using each
team’s values for certain data points, and depending on the individual weighting, a weighted
sum is produced.

In the past, pickability weights were decided based on experience and trial and error. This year,
a more mathematical approach was taken to determine which data points to use and how
heavily to weigh their values. After an event, all the teams are sorted into their perceived ranks
such as high, medium, low, etc. Next, a few different multivariate linear regressions are run to
see what model best predicts each team according to the assigned ranks. We then use the
given coefficients as our weights for each component data point. After this, we calculate the
pickability values for each team and rank them from best to worst for every model estimated.
Finally, we have a blind comparison to see what model leads to the rankings that make the
most sense and choose to use that pickability model for the following competition. This would
be run for both first and second pickability metrics.

Citrus Circuits | 2022 scouting whitepaper

https://www.citruscircuits.org/uploads/6/9/3/4/6934550/whitepaper_2020.pdf

Through this process, we found models that were able to predict the relative ability of teams
better than our previous models. For example, in our second pickability metric at Houston
Champs we were able to find that (intakes)² was a great estimator for driver ability and in turn,
positional defense ability.

Scout Precision Ranking
In previous years, we attempted to measure the accuracy of Scouts for use in consolidation
and robot assignments. Scout Precision Ranking (SPR) was calculated based on the number of
decisions a Scout made that were considered to be “correct.” A “correct” decision was
considered to be the majority decision between the three Scouts on a robot. When there was
conflicting data between all three Scouts, consolidation would use the value reported by the
more accurate Scout. However, Scouts could still agree on the wrong data, meaning that
incorrect decisions were counted as correct while calculating SPR. To avoid this, this year’s
SPR formula compares Scout data against data from The Blue Alliance.

TBA only reports official scores for alliances, not individual teams, so Scout precision
calculations use the combined scores of Scouts on an alliance. Since there are nine Scouts per
alliance, with three on each robot, there are 27 different possible combinations of three Scouts
that will contain one Scout from each robot on the alliance. For each of these combinations,
the cargo scores for each Scout are totaled to get the overall alliance score. The official alliance
score is pulled from TBA (minus foul points, auto line points, and climb points) and then
compared against the total scouted score to find the error. A match’s average error is
calculated by taking the average of all errors in all combinations.

Once the match average error has been calculated for each Scout in a match, the formula
looks at each three-Scout combination that a specific Scout was in. The average errors of the
other two Scouts in that combination are divided by 3 (since errors are the result of three-Scout
combinations) and totaled to get the expected error of that combination. Then, the actual error
of the combination, including the Scout in question, is subtracted from the expected error to
find how much the focus Scout contributed to the error of that combination. The average of this
value for all of a scout’s combinations in a specific match is that scout’s Scout-In-Match (SIM)
Precision.

The average of a scout’s SIM Precision values for all matches in a competition is that scout’s
overall Scout Precision value. The lower this value, the better, since it represents how much
error on average a Scout contributed to their combinations.

For a more detailed example of the Scout Precision Ranking calculation, see Appendix C.

Device Data Pulling
Apart from QR scanning, data is also inputted to the Server by pulling it directly from devices
plugged into the Server computer. The qr_input.py file automatically pulls qr data, which is

Citrus Circuits | 2022 scouting whitepaper

downloaded onto tablets as a backup as well as being displayed, from any tablets which are
plugged in when it is run. In addition, it also pulls JSON data and images from connected
phones with data collected using the Pit Scout app. This data is stored in a directory within the
Server, as well as inserted in the database. Once the Server has pulled all pit images, users of
the Viewer app can plug their phones into the Server computer and have the images pushed to
the Downloads folder of the phone using the send_viewer_images.py script. From there, Viewer
can read and display those images.

Viewer
Viewer is an Android app written in the Kotlin programming language. The app allows
strategists to review, organize, and visualize processed scouting data live during competition in
order to create educated match strategies.

Navigation
The Viewer uses a sidebar navigation view for selecting its primary pages. There are also
multiple places in the pages where the user can navigate to other related pages, such as from
the match schedule to the match details page. To optimize navigation, the sidebar can be
viewed from any screen, including when the Viewer has opened multiple nested pages.

In addition to the navigation bar, a search bar is located directly at the top of the match
schedule page, which filters the match schedule by that team. A user can submit the search
button to go directly to the team’s details page.

Robot Images
In order for strategists to quickly recall individual teams and distinguish among them, users can
view the picture of a team’s robot at the top of their team details page. These images are taken
using the Pit Collection app and then locally downloaded onto every phone that has the Viewer
(see Device Data Pulling in the Server section). By locating files using a predetermined naming
system (see the Pit Collection section), the app can quickly display images without having to
establish a connection to the Cardinal web server.

Citrus Circuits | 2022 scouting whitepaper

Match Details
After tapping on a match schedule cell, the match’s details page is opened and consists of a
header and data section. If the match has not been played, the data points displayed will be
predictions and averages, and if it has been played, the data points will be the actual
outcomes. In the header, alliance specific data is displayed (e.g. predicted score) and in the
data section, team data is displayed in a table. By tapping a team number in the table, their
team details page will open.

Match Details screen

Citrus Circuits | 2022 scouting whitepaper

Starred Matches
Long pressing on a match in any match schedule screen will turn it yellow and make it appear
in the starred matches list. The list of starred matches is stored in a local file in the device's
phone's storage so when the app is reinstalled to update, starred matches will be saved.

Starred matches list

Citrus Circuits | 2022 scouting whitepaper

Team In Match Data Graphs
Tapping on a data point in team details opens up its TIM Data Graph—a bar graph of match
number vs the data point’s value. For example, by tapping on avgBallsScored, a graph will
appear with the first bar showing the number of balls scored in their first match. Tapping on a
bar opens its match details page.

TIM Data Graph

Citrus Circuits | 2022 scouting whitepaper

User Preferences
Users can select which data points to be displayed in match details, which is essential when
users vary from a Match Strategist to a student assisting alliance partners in the pit. The Match
Strategist may want to quickly view more data on a team’s average intakes while mechanical
members would rather view a team’s motor type. Data points are saved in a file stored in the
Downloads folder so they aren’t reset after closing or updating the application. Regardless of
which data points are selected in preferences, users can view all of a team’s data in their team
details page—Preferences only affect the match details page.

Preferences screen and User Preferences editable data points

Citrus Circuits | 2022 scouting whitepaper

Last Four Matches
In team details, users can toggle between all-matches data points to the same data points but
only calculated from a team’s last four matches. This is used to estimate a team’s performance
during eliminations, since their performance at the beginning of the competition is likely lower
than at the end of quals.

Team List Last four matches screen Team details screen

Citrus Circuits | 2022 scouting whitepaper

Field Map and Pit Map
A pop-up of the game field map or the pit map can be accessed on any page via buttons in the
header bar. This is largely for the Match Strategist to quickly refer to in the pits, without having
to navigate away from the page they are currently on. Field maps are downloaded into the
app’s resource directory, and can be toggled between alliances to view perspective-specific
maps. The pit map is downloaded into Downloads and then named pit_map (no extension) in
order to be displayed.

Field Map

Citrus Circuits | 2022 scouting whitepaper

Rankings for Specific Data Points
By long pressing on a data point from the team details page, a user can view a ranked list of all
the teams by that data point. These ranks are also displayed on the left side of team detail
cells, but aren’t refreshed as often to avoid lag. By viewing a ranked list, users can see which
teams are below and above a certain team. By clicking on the cells in the ranked list, users can
open a team’s team details page.

Ranking teams by RP Ranking a team by a specific data point

Data Refreshing
Data in the Viewer was originally fetched only on startup. Now, data refreshing automatically
fetches the data and updates caches in a set time interval. When the data refreshes, callbacks
are run in all active fragments in the backstacks which provide their own implementations for
updating the UI.

Reading from Web Server and Authentication
The data in the Viewer is retrieved using a web server called Cardinal (see the Server section).
Viewer can request different pieces of data from the database by their collection name. Each
request is authenticated with an API key.

Citrus Circuits | 2022 scouting whitepaper

Predicted vs. Actual Scores and Ranking Points in Match Schedule
Cells of matches in the match schedule show up light gray after the match has finished and
data on the match has been received by Viewer. The score shown in each cell and in the match
details is the predicted score if the match has not been played yet and the actual score if the
match has been played already. This is the same for predicted and actual ranking points.

Match schedule with played matches colored gray

Strategist Notes
Our strategists previously used a spreadsheet to organize their notes on teams. Rather than
sending information back and forth via a messaging app, Stands Strategists can note down
information on a team in their team details page. The data will be stored on the Cardinal web
server and pulled by all the other devices. This feature was added late to the season and not
used very much—it will likely be redesigned to be more efficient for Stands Strategists next
year.

Live Picklist
Live picklist allows users to view and edit the picklist from the Viewer. After the picklist
meeting, picklist rankings are exported from the Picklist Editor spreadsheet, processed by the
Server, and then uploaded to the picklist collection in MongoDB. A new Python web server

Citrus Circuits | 2022 scouting whitepaper

using FastAPI called Grosbeak was created to allow CRUD to access the picklist collection
using a websocket connection. Websockets are authenticated using an API key different from
Cardinal. Once a connection is initialized, the server sends the picklist information to the
Viewer. Whenever the picklist is edited, the information gets sent to all clients currently
connected and the UI gets updated. To start editing the picklist, a message is sent containing a
password that is verified on the server side.

Live picklist was developed for the last regional in the season and still has large amounts of
testing and improvement to undergo. It was functional at that competition, but had trouble with
a stable connection. It will likely be improved during the offseason or next season.

Live Picklist connected and disconnected

Citrus Circuits | 2022 scouting whitepaper

First and second pickability screens

Picklist Editor
The Picklist Editor is used by 1678 during its picklist meetings to construct a team picklist. The
app is built on Google Sheets and uses scripts written with Google Apps Script.

Team Rank Ordering
In the main editor, a list of the teams in the competition is shown in the first column, initially
ordered by their ‘pickability’ ratings, based on either first or second pick rank scores (for more
information on how pickability is calculated, see Pickability in the Server section). Ranks are
displayed in the first two columns, but are typically hidden throughout the meeting, since they
are only a starting place for the picklist order.

Each row displays the data for its respective team. The data is taken directly from a separate
raw data sheet and the data displayed is selected in another page of the spreadsheet.

To reorder the teams, the picklist operator edits the ranking number (e.g. to move a team in
between first and second, change their rank to 1.5). Then, the scripts behind the Picklist Editor

Citrus Circuits | 2022 scouting whitepaper

will automatically reorder the teams and update their ranks to whole numbers. The spreadsheet
is designed for bubble sorting, or starting from the top and working downwards.

Picklist Editor

Sidebar
The Picklist Editor provides a sidebar feature to display pictures of robots. Whenever a change
is made in the order, the next team’s robot pictures are shown in the sidebar, allowing the
members of the picklist meeting to more easily remember which robot is which. The picklist
operator can also edit the team number in the very top left corner cell to manually choose an
image.

Picklist Editor sidebar

Citrus Circuits | 2022 scouting whitepaper

Team Performance Comparison Graphs
When a match-by-match comparison between teams is necessary, the Picklist Editor has a
graphing feature to compare the data of up to four teams in a single data point. The graphs can
show changes in data over multiple matches.

Team performance comparison bar graph

Removing teams from the Picklist
In order to limit the teams to rank—to save time, Strategists determine teams that aren’t
performing at the level they’d like for 1678’s alliance and remove them at the beginning of the
meeting from the picklist. These teams are discussed before the picklist meeting, between the
Match Strategist, Stands Strategists, and strategy mentors. By typing “DNP” in their order, a
team is removed from the list on the main page. In case the team is later reconsidered, the
operator can send the team back by checking its box.

DNP Editing

Citrus Circuits | 2022 scouting whitepaper

Updating Data Points Used in the Ranking Process
The data points shown in the editor as well as their order shown changed drastically
throughout the season based on feedback from students and mentors in picklist meetings. Due
to the way that the Picklist Editor is set up, it was not difficult to add or remove data points in
the middle of picklist meetings, although strategists did attempt to determine all data points
beforehand to save time.

Operational Steps
Before 1678’s picklist meetings, the picklist operator is sent raw data in CSV format from the
Server. During picklist meetings, the picklist operator displays the Picklist Editor through a
projector.

Then, starting with the first pick order from the ranking equations, the teams are reviewed
starting at the top and compared on a pairwise basis progressing down the list, deciding for
each team whether it should be moved up the picklist and by how many places. Once the
potential first picks have been ranked (usually down to 10 or 12 teams), the rows containing
those teams are hidden from the editor and the potential second picks are then ranked in the
same manner. Once the re-ranking process is complete, a CSV export of the final picklist is
sent back to the Server. At a regional, where the event continues in the morning of the second
day, strategists make further changes to the picklist based on further information and closer
review of specific teams.

Google Apps Script
The Picklist Editor is built on Google Apps Script, which is very similar to the JavaScript
language. In fact, using the official command line interface Clasp, it is possible to clone the
scripts into a local development environment as JavaScript files. This season, the scripts were
restructured to be more organized, and they were rewritten using the TypeScript programming
language. TypeScript is a powerful superset of JavaScript which allows for static type checking
and increased safety.

For more information on the Picklist Editor’s scripts, see the Picklist Editor repository on
GitHub.

Future Updates
In future seasons, we are planning to make improvements to the Picklist Editor such as better
sidebar performance in pulling and a central logging system.

Citrus Circuits | 2022 scouting whitepaper

Video System
The Video System is a vital part of data collection and strategization by allowing strategists to
review and rewatch matches—regardless of The Blue Alliance’s speed in uploading videos and
the video’s angle. Those in charge of the Video System take videos of all qualification and
elimination matches for further analysis. These match videos allow strategists to create match
strategies for upcoming matches, provide feedback to drivers, and rewatch a team’s
performance in a specific match during the picklist meeting.

Video System operators start by setting up the tripod and camera in a high-up and centered
position overlooking the match field. It uses a script written in Python to name (based on the
inputted match number and team numbers based on the match schedule) and copy the video
from the SD card to a USB drive.

During elimination matches, videos are sent via Slack to match strategists on or near the field.
To gain access to the internet, a Video System operator tethers their laptop to a mobile phone
with cell service. This allows strategists to rewatch matches and develop a better strategy for
the next match in almost no time.

Appendices
Appendix A: Production Schedule
Prior to Kickoff — All Citrus Circuits students work on either training or preparing for an
offseason competition. We take inventory of all materials before each season and order any
needed supplies.

1/8/2022 — All Citrus Circuits students watch the Kickoff broadcast and participate in a
full-team discussion about what 1678 will attempt to do in the new season.

1/9/2022 — The Scouting subteam meets with strategy members to determine data points to
display, and then what data points are necessary to collect in order to process them. For each
data point on the final list, the following information is noted down:

● The data type

● A description of what the data point represents

● Some example values

Citrus Circuits | 2022 scouting whitepaper

● Which database collection it would be stored in

● Whether it would be collected raw, or if it needed to be calculated from other data
points

○ If it was a raw data point, how it would be collected (by Scouts, Super Scouts,
Pit Scouts, Stands Strategists, or the The Blue Alliance API)

● If it would be displayed in the Viewer, and if so, how it would be visualized

1/9/2022 to 1/15/2022 — Back-End students update the schema files to contain the new data
points for the 2022 season. Front-End students update the Match Collection and Pit Collection
app with new data and UI designs.

1/15/2022 to 1/30/2022 — Back-End students updated the calculation files to match the new
schema. Front-End students finish the first version of the collection apps and begin to update
the Viewer and add new features.

1/30/2022 to 2/27/2022 — Software Scouting begins to conduct end-to-end field tests to
ensure the system runs together. Front-End collects user feedback on the UI of apps. The list
of data points to calculate/collect is updated based on strategy discussions. Students watch
xRC Simulator matches to test out the scouting system before real match videos are available.
Coming closer to competition season, Scouts and Super Scouts are trained on how to use the
Match Collection app.

2/27/2022 to 4/23/2022 — During competition season, the Wednesday or Sunday before each
competition is a feature freeze, a deadline that completely stops development on all new
features until after the competition. The subteam runs a full-system test before every
competition in order to catch and fix last-minute bugs. On the first meeting after returning from
each competition, the full subteam participates in a debrief and communicates with users and
mentors in order to prioritize which changes to make before the next competition.

Appendix B: How to Run a 1678 System Test
1. Before the test, collect match videos. Ideally, these are high-scoring matches from a

previous regional/district competition. If the competition season hasn’t started yet, use
Week 0 videos or screen recordings of the xRC Simulator.

2. Make a new Server branch to merge in any hotfixes that may need to be made during
the field test. Name it with the date of the field test. Pull any unmerged PRs that need to
be tested onto this branch.

Citrus Circuits | 2022 scouting whitepaper

3. Decide on a TBA event key to use (eg. 2022cada for the 2022 Sacramento Regional).
This will ideally match the event used for the videos, but it doesn’t have to — it can be
an event from a previous year as long as it has a match schedule and team list. Use the
event key to create a test database and team list and match schedule files.

4. Set up the system as it would be at competition and send the newest .apk files to the
tablets and phones.

5. Recruit volunteers to use the Scout and Super Scout apps to collect data from match
videos. If there are fewer than 20 students available, have people use multiple tablets at
once. The main concern is not to get accurate data, but to thoroughly use every feature
of the collection apps. The match videos are only there as a guide, so it’s okay if the
team number assigned to a Scout is different from the robot they are scouting. Have a
user enter test data using the Pit Collection app.

6. After each match, scan the data into the Server. Make sure data is being entered into
the local and cloud databases, and that the web server is able to send it to the Viewer.
Monitor the Viewer to make sure data is updating and being displayed correctly.

7. Write down every bug or suggestion for improvement as it comes up, no matter how
small. Afterwards, go through the list and prioritize which ones to address first.

Appendix C: SPR Calculation Walkthrough
Consider a Scout named X. To calculate X’s SPR, the formula starts with a single match that X
scouted in. It finds two other Scouts in that match, one scouting each of the other teams in the
alliance. Now, it adds the scout-reported scores from the three Scouts together to calculate a
theoretical alliance score and compares it against The Blue Alliance’s official alliance score to
get that combination’s error. For example, in a combination where X said Robot 1 scored 12
points, Y said Robot 2 scored 31 points, and Z said Robot 3 scored 10 points, and TBA reports
that the entire alliance scored 50 points, that combination’s error is 3 points.

Then, the formula takes the error of another combination with X and two different Scouts on the
other two teams. This process repeats until it has gone through all the possible combinations
containing X and the other two teams that X didn’t scout. The average error of all these
combinations is X’s average combination error in that match. The entire process is repeated for
all Scouts in that match to find their average combination errors.

Then, the formula returns to look at each individual combination that X was in. For each
combination, it finds the average combination errors of the other two Scouts and divides each
by 3. It sums the two errors to get the expected error of that combination. For example, in a
combination with X, Y, and Z, where Y has an average error of 15 and Z has an average error of
4, it would find the expected error of that combination to be 6.33.

Citrus Circuits | 2022 scouting whitepaper

Then, it subtracts the error from the specific combination from the expected error. If X had been
completely accurate, the error from that single combination should be similar to the expected
error, so the result should be close to 0. If X had been off, they would have contributed further
error to the combination error, so the result would be less than or greater than 0 depending on
how far above or under they were. If the error of the XYZ combination was 6.33, then the
formula would determine that X did not contribute any extra error on top of the 6.33 that was
already contributed by Y and Z. If the error of the XYZ combination was 7, then the formula
would determine that X contributed approximately 0.66 extra points in error.

This process is repeated for every Scout in that match, over all matches in a tournament. Each
scout’s average score across all their matches is averaged to calculate their overall Scout
precision.

Appendix D: Subteam Structure
Students on Software Scouting are split into either Back-End or Front-End. Each end has its
own student lead, who is chosen by the previous year’s team captains and head mentors along
with all other subteam leads. Back-End students code mostly in Python and develop the Server
and Schema, while Front-End students mainly use Kotlin and create all the apps that users
interact with. However, Software Scouting is still considered to be a single subteam, and
students on both ends regularly review each other’s code and participate in full subteam
discussions and system tests. Some students also occasionally write code for the opposite
end. Veteran members serve as guides for newer members, and students are often paired to
work together on tasks. The Software Scouting subteam works closely with the Strategy
subteam, and the majority of scouting developers are also members of the Strategy subteam.

Appendix E: Competition Roles
Roles at competition are broken up into developers, scouts, operators, and strategists. These
are all student roles, with the exception of mentors assisting Stands Strategists, but even then
the students are the primary voices.

Developers — One Front-End developer and one Back-End developer. Two Objective Scouts
also serve as back-up developers who primarily Scout but can assist in case there are many
issues.

Scouts — Since 18 Objective Scouts (a.k.a. Scouts) are needed per match, about 21 Scouts
travel to each competition in order to give three Scouts a break at a time. In addition, there are
three Super Scouts (a.k.a. Super Scouts) so that one can be on break while the other two
scout. Since Super Scouts are required to have extensive experience on the Strategy subteam,
the student on break often chooses to help other strategists. The lead Scout manages all of the
logistics for the Scouts: meals, shifts, handing out tablets, and anything else they might need.

Citrus Circuits | 2022 scouting whitepaper

Operators — One student Scout who operates the spreadsheet during picklist meetings, as
well as two Video System operators (who double as back-up Scouts), who record and label
each match (see Video System section).

Strategists — Two Stands Strategists write specific notes on each team at competition. The
subject of their notes changes year-to-year, but this year they largely focused on teams’
defensive ability and any matches they played defense in. At regionals, Stands Strategists
tweak the picklist depending on teams’ performance before alliance selection, on the second
day of competition. The Match/Pit Strategist uses the Pit Collection app during practice
matches and then plans and communicates match strategies during the rest of the days of
competition.

Appendix F: Resources
● Old Whitepapers

○ https://www.citruscircuits.org/scouting.html

● Software Scouting Software

○ Server code: https://github.com/frc1678/server-2022-public/tree/main

○ Cardinal code: https://github.com/frc1678/cardinal-2022-public/tree/main

○ Grosbeak (Live Picklist) code:
https://github.com/frc1678/grosbeak-2022-public/tree/main

○ Viewer app: https://github.com/frc1678/viewer-2022-public/tree/release

○ Picklist Editor code:
https://github.com/frc1678/picklist-editor-2022-public/tree/main

○ Schema files: https://github.com/frc1678/schema-2022-public/tree/main

○ Pit Collection app:
https://github.com/frc1678/pit-collection-2022-public/tree/main

○ Match Collection app:
https://github.com/frc1678/match-collection-2022-public/tree/main

● Fall Workshops

○ Link to 2020 Fall Workshops:
https://www.youtube.com/watch?v=oioWQnJdvQo&list=PL6j32uphg3L9imPGE
Gz-dHhFFkKUAjFrm

Citrus Circuits | 2022 scouting whitepaper

https://www.citruscircuits.org/scouting.html
https://github.com/frc1678/server-2022-public/tree/main
https://github.com/frc1678/cardinal-2022-public/tree/main
https://github.com/frc1678/grosbeak-2022-public/tree/main
https://github.com/frc1678/viewer-2022-public/tree/release
https://github.com/frc1678/picklist-editor-2022-public/tree/main
https://github.com/frc1678/schema-2022-public/tree/main
https://github.com/frc1678/pit-collection-2022-public/tree/main
https://github.com/frc1678/match-collection-2022-public/tree/main
https://www.youtube.com/watch?v=oioWQnJdvQo&list=PL6j32uphg3L9imPGEGz-dHhFFkKUAjFrm
https://www.youtube.com/watch?v=oioWQnJdvQo&list=PL6j32uphg3L9imPGEGz-dHhFFkKUAjFrm

○ Link to 2015 Fall Workshop on Scouting Philosophy:
https://youtu.be/eytf7ngfm0A

○ Link to 2015 Fall Workshop on Scouting Philosophy presentation:
https://www.citruscircuits.org/uploads/6/9/3/4/6934550/1678_fall_scouting_wor
kshop.pptx_2.pdf

○ You can view previous years’ Fall Workshops on the Citrus Circuits

website: https://www.citruscircuits.org/fallworkshops.html

and in the playlists tab on the 1678 YouTube channel:

https://www.youtube.com/c/CitrusCircuits/playlists

○ Contact us if you have any questions!

softwarescouting@citruscircuits.org

Appendix G: Starting a Scouting System
We recommend teams to start with a small system structure: you can use a web app or paper
and pencils—whichever is easiest for you. Citrus Circuits has successfully used a Google
Forms scouting system at off-season events to train new members in scouting principles and
methods. Then, prioritize training your Scouts. We highly recommend finding at least one hour
a week where your Scouts can watch match videos and then discuss with one another: What
would you have done differently? What team did really well? What were some small mistakes?
Who had the best speed?

If you are able to spare only about two members of your team for scouting, then we
recommend either having each one take notes about the ability of one alliance (training is very
important when you are recording qualitative notes) or you can reach out to fellow teams and
gauge interest in forming a scouting alliance. Each team can get a copy of the data to review
for their matches and picklist meeting, and none of them have to give up a bunch of members.
If you are a part of a scouting alliance, however, try to create a uniform training method (e.g.
schedule a two-hour Zoom training where they practice taking notes or using your scouting
app).

If you have any questions at all about starting your own scouting system, want to get our
team’s advice given your resource level, or have any other questions, please contact us at
softwarescouting@citruscircuits.org.

Appendix H: Hardware
In order to use apps at competitions we were required to purchase different pieces of
hardware. These are 40 tablets for Match Collection, four Android phones for Pit Collection and

Citrus Circuits | 2022 scouting whitepaper

https://youtu.be/eytf7ngfm0A
https://www.citruscircuits.org/uploads/6/9/3/4/6934550/1678_fall_scouting_workshop.pptx_2.pdf
https://www.citruscircuits.org/uploads/6/9/3/4/6934550/1678_fall_scouting_workshop.pptx_2.pdf
https://www.citruscircuits.org/fallworkshops.html
https://www.youtube.com/c/CitrusCircuits/playlists
mailto:softwarescouting@citruscircuits.org
mailto:softwarescouting@citruscircuits.org

Viewer, a laptop to run the Server, three scanners to scan QR codes, four cases for
transportation (two for tablets and one for each of the Video System and Server), and multiple
SD cards with phone plans. If you want to know more about the hardware please look at
section 4.2 of the 2020 Whitepaper.

Appendix I: Codebook

Team In match dataset
Datapoint Data Type Description

auto_high_balls Integer
The number of balls scored by a team in
the high goal in auto

auto_low_balls Integer
The number of balls scored by a team in
the low goal in auto

auto_total_balls Integer
The number of balls scored by a team in
either goal in auto

climb_attempts Integer
The number of times a team attempted to
climb (0 if they did not attempt to climb,
1 if they attempted to climb at any point)

climb_level String
The rung level a team climbed to in
endgame (None, Low, Mid, High, or
Traversal)

confidence_rating Integer

The number of individual scouts datasets
that contributed to the consolidated data
(3 if all 3 scouts were included, 2 or 1 if
there was missing scout data)

incap Integer
The amount of time a team spent incap,
disregarding incap periods of fewer than
8 seconds

intakes Integer The number of balls a team intook

match_number Integer The number of the qualification match

start_position String
The position a team started from at the
start of the match (Zero for no-show,
One, Two, Three or Four)

team_number Integer The team's identifying number

tele_high_balls Integer
The number of balls scored by a team in
the high goal in tele

tele_low_balls Integer
The number of balls scored by a team in
the low goal in tele

tele_total_balls Integer
The number of balls scored by a team in
either goal in tele

Citrus Circuits | 2022 scouting whitepaper

https://www.citruscircuits.org/uploads/6/9/3/4/6934550/whitepaper_2020.pdf

Objective Team dataset
Datapoint Data Type Description

auto_avg_high_balls Float
The average number of balls scored in
the high goal by a team in auto

auto_avg_low_balls Float
The average number of balls scored in
the low goal by a team in auto

auto_avg_total_balls Float
The average number of balls scored in
either goal by a team in auto

auto_max_high_balls Float
The maximum number of balls scored in
a single match in the low goal by a team
in auto

auto_max_low_balls Float
The maximum number of balls scored in
a single match the high goal by a team in
auto

auto_sd_high_balls Float

Calculated by finding the number of
autonomous high goals a team scored in
each of their matches and taking the
standard deviation of that dataset

auto_sd_low_balls Float

Calculated by finding the number of
autonomous low goals a team scored in
each of their matches and taking the
standard deviation of that dataset

avg_climb_points Float
The average number of points a team
earned from climbing in each match

avg_incap_time Float

The average amount of time a team
spent incapacitated in each match,
disregarding incap periods of fewer than
8 seconds

avg_intakes Float
The average number of balls a team
intook in each match

climb_all_attempts Integer
The total number of times a a team
attempted to climb, regardless of
success

climb_percent_success Float
The percent of climb attempts that
resulted in a successful climb at any level

high_rung_successes Float
The total number of successful climbs to
the high rung

lfm_auto_avg_high_balls Float
The maximum number of balls scored in
a single match in the high goal in auto
during a team's most recent 4 matches

lfm_auto_avg_low_balls Float
The maximum number of balls scored in
a single match in the low goal in auto
during a team's most recent 4 matches

Citrus Circuits | 2022 scouting whitepaper

lfm_auto_max_high_balls Integer
The maximum number of balls scored in
a single match the high goal by a team in
auto in their most recent 4 matches

lfm_auto_max_low_balls Integer
The maximum number of balls scored in
a single match in the low goal by a team
in auto in their most recent 4 matches

lfm_avg_incap_time Float

The average amount of time a team
spent incapacitated, disregarding incap
periods of fewer than 8 seconds, in their
most recent 4 matches

lfm_climb_all_attempts Integer
The total number of times a a team
attempted to climb, regardless of
success, in their most recent 4 matches

lfm_climb_percent_success Float
The percent of climb attempts that
resulted in a successful climb at any level
in a team's most recent 4 matches

lfm_high_rung_successes Integer
The total number of successful climbs to
the high rung in a team's most recent 4
matches

lfm_low_rung_successes Integer
The total number of successful climbs to
the low rung in a team's most recent 4
matches

lfm_matches_incap Integer

The total number of matches where a
team was incapacitated, disregarding
incap periods of fewer than 8 seconds, in
their most recent 4 matches

lfm_max_climb_level String
The highest rung a team successfully
climbed to in their most recent 4 matches

lfm_max_incap Integer

The longest period of time a team spent
incap in a single match, disregarding
incap periods of fewer than 8 seconds, in
their most recent 4 matches

lfm_mid_rung_successes Integer
The total number of successful climbs to
the mid rung in a team's most recent 4
matches

lfm_mode_start_position String
The most common position(s) a team
started from in their most recent 4
matches

lfm_tele_avg_high_balls Float
The average number of balls scored in
the high goal by a team in tele in their
most recent 4 matches

lfm_tele_avg_low_balls Float
The average number of balls scored in
the low goal by a team in tele in their
most recent 4 matches

Citrus Circuits | 2022 scouting whitepaper

lfm_tele_max_high_balls Integer
The maximum number of balls scored in
a single match in the high goal in tele
during a team's most recent 4 matches

lfm_tele_max_low_balls Integer
The maximum number of balls scored in
a single match in the low goal in tele
during a team's most recent 4 matches

lfm_traversal_rung_successes Integer
The total number of successful climbs to
the traversal rung in a team's most recent
4 matches

low_rung_successes Integer
The total number of successful climbs to
the low rung

matches_incap Integer
The total number of matches where a
team was incapacitated, disregarding
incap periods of fewer than 8 seconds

matches_played Integer
The total number of matches a team
played in

matches_played_defense Integer
The number of matches where a team
played defense

max_climb_level String
The highest rung a team successfully
climbed to

max_incap Integer
The longest period of time a team spent
incap in a single match, disregarding
incap periods of fewer than 8 seconds

mid_rung_successes Integer
The total number of successful climbs to
the mid rung

mode_climb_level String
The most common rung(s) a team
successfully climbed to

mode_start_position String
The most common position(s) a team
started from

position_zero_starts Integer
The number of matches where a team
was a no-show (did not start on the field)

position_one_starts Integer
The number of matches where a team
started from Position #1

position_two_starts Integer
The number of matches where a team
started from Position #2

position_three_starts Integer
The number of matches where a team
started from Position #3

position_four_starts Integer
The number of matches where a team
started from Position #4

team_number Integer The team's identifying number

tele_avg_high_balls Float
The average number of balls scored in
the high goal by a team in tele

tele_avg_low_balls Float
The average number of balls scored in
the low goal by a team in tele

Citrus Circuits | 2022 scouting whitepaper

tele_avg_total_balls Float
The average number of balls scored in
either goal by a team in tele

tele_max_high_balls Integer
The maximum number of balls scored in
a single match in the low goal by a team
in tele

tele_max_low_balls Integer
The maximum number of balls scored in
a single match the high goal by a team in
tele

tele_sd_high_balls Float

Calculated by finding the number of
teleop high goals a team scored in each
of their matches and taking the standard
deviation of that dataset

tele_sd_low_balls Float

Calculated by finding the number of
teleop low goals a team scored in each
of their matches and taking the standard
deviation of that dataset

traversal_rung_successes Integer
The total number of successful climbs to
the traversal rung

Predicted team dataset
Datapoint Data Type Description

current_avg_rps Float
The team's current official Ranking
Score, as reported by TBA

current_rank Integer
The team's current official seed, as
reported by TBA

current_rps Integer
The team's current official total RPs, as
reported by TBA

predicted_rank Integer
A team's predicted seed by the end of
qualifications

predicted_rps Float
The total number of RPs a team is
expected to earn by the end of
qualifications

team_number Integer The team's identifying number

Citrus Circuits | 2022 scouting whitepaper

Pickability Dataset
Datapoint Data Type Description

first_pickability Float

Calculated by taking a weighted average
of a team's values for certain datapoints,
measures approximately how suited a
team would be as a first pick alliance
partner

second_pickability Float

Calculated by taking a weighted average
of a team's values for certain datapoints,
measures approximately how suited a
team would be as a second pick alliance
partner

team_number Integer The team's identifying number

test_first_pickability Float

Allows strategists to experiment by
changing datapoints and weights during
competition and compare with the official
first_pickability results without affecting
the official first_pickability values

test_second_pickability Float

Allows strategists to experiment by
changing datapoints and weights during
competition and compare with the official
second_pickability results without
affecting the official second_pickability
values

Predicted Alliance in match dataset
Datapoint Data Type Description

actual_rp1 Float
TBA's reported official cargo RP for the
alliance in match

actual_rp2 Float
TBA's reported official hangar RP for the
alliance in match

actual_score Integer
TBA's reported official score for the
alliance in match

alliance_color_is_red Boolean
Whether or not the alliance being
predicted for is the red alliance in the
match

final_predicted_rp1 Float

The predicted cargo RP at the time of the
match being played, does not continue
updating with new team data after the
match was already played.

final_predicted_rp2 Float

The predicted hangar RP at the time of
the match being played, does not
continue updating with new team data
after the match was already played.

Citrus Circuits | 2022 scouting whitepaper

final_predicted_score Float

The predicted score at the time of the
match being played, does not continue
updating with new team data after the
match was already played.

has_actual_data Boolean
Whether or not TBA has provided official
match results for the match

has_final_scores Float

The predicted score at the time of the
match being played, does not continue
updating with new team data after the
match was already played.

match_number Integer The number of the qualification match

predicted_rp1 Float

An alliance's predicted cargo RP. 1.0 if
they were predicted to achieve it, 0.0 if
not. Is a float to allow for possible
fractional values in the future

predicted_rp2 Float

An alliance's predicted hangar RP. 1.0 if
they were predicted to achieve it, 0.0 if
not. Is a float to allow for possible
fractional values in the future

predicted_score Float An alliance's predicted match score

win_chance Float
The estimated probability of the alliance
winning the match

won_match Boolean
Whether or not the alliance actually won
the match, as reported by TBA

Scout in match precision dataset
Datapoint Data Type Description

alliance_color_is_red Boolean
Whether or not the team the scout
reported data for was on the red alliance

match_number Integer The number of the qualification match

scout_name String The name of the scout

sim_precision Float
The scout's precision score in a single
match (SIM = Scout-in-Match)

team_number Integer The team's identifying number

Scout Precision dataset
Datapoint Data Type Description

scout_name String The name of the scout

scout_precision Float
The scout's overall scout precision score
across the entire competition

Citrus Circuits | 2022 scouting whitepaper

TBA TEAM in match dataset
Datapoint Data Type Description

auto_line Boolean
Whether or not a team successfully
crossed the auto line in auto, as reported
by TBA

match_number Integer The number of the qualification match

team_number Integer The team's identifying number

TBA team dataset
Datapoint Data Type Description

team_number Integer The team's identifying number

team_name String The team's name

auto_line_successes Integer
The total number of matches where a
team successfully crossed the auto line
in auto, as reported by TBA

objective Pit dataset
Datapoint Data Type Description

can_climb Boolean
Whether or not a team has a climbing
mechanism

can_eject_terminal Boolean
Whether or not a team is able to push
balls to the human player through the
terminal

can_intake_terminal Boolean
Whether or not a team can intake balls
from the human player through the
terminal

can_under_low_rung Boolean
Whether or not a team can drive under
the low rung

drivetrain Integer/Enum
The type of drivetrain a team has (0: tank,
1: mechanum, 2: swerve, or 3: other)

drivetrain_motor_type Integer/Enum
The type of motors a team uses (0:
minicim, 1: cim, 2: neo, 3: falcon)

drivetrain_motors Integer
The number of motors a team has on
their drivetrain

has_ground_intake Boolean
Whether or not a team can intake balls
off the floor

has_vision Boolean
Whether or not a team has a vision
system

team_number Integer The team's identifying number

Citrus Circuits | 2022 scouting whitepaper

Subjective team dataset
Datapoint Data Type Description

driver_ability Float

Calculated by taking the weighted
average of a team's field awareness and
quickness, then taking the z-score of that
value compared to the values of all other
teams at the competition

driver_field_awareness Float

A team's field awareness score, adjusted
based on the scores of the teams they
played with (if they were compared
against teams that had lower scores,
their score was lowered to reflect that
they had "easier" comparisons)

driver_quickness Float

A team's quickness score, adjusted
based on the scores of the teams they
played with (if they were compared
against teams that had lower scores,
their score was lowered to reflect that
they had "easier" comparisons)

match_number Integer The number of the qualification match

team_number Integer The team's identifying number

test_driver_ability Float

Allows strategists to experiment by
changing datapoints and weights during
competition and compare with the official
driver_ability results without affecting the
offical driver_ability values

unadjusted_field_awareness Float
A team's field awareness score, before
being adjusted based on the scores of
the teams they played with

unadjusted_quickness Float
A team's quickness score, before being
adjusted based on the scores of the
teams they played with

Citrus Circuits | 2022 scouting whitepaper

Subjective team in match dataset
Datapoint Data Type Description

alliance_color_is_red Boolean
Whether or not the team the scout
reported data for was on the red alliance

field_awareness_score Integer
The ranking of a team's field awareness
relative to their alliance partners (3 for
most aware, 1 for least aware)

match_collection_version_number String
The version of the Match Collection app
that was used by the scout to collect the
data

match_number Integer The number of the qualification match

played_defense Boolean
Whether or not the team played defense
against their opponents in the match

quickness_score Integer
The ranking of a team's quickness
relative to their alliance partners (3 for
most quick, 1 for least quick)

schema_version Integer
The version of the QR schema used to
compress/decompress the QR

scout_name String The name of the scout

serial_number String
The serial number of the tablet used by
the scout to collect the data

team_number Integer The team's identifying number

timestamp Integer
The time that the QR was generated, in
Unix time

Unconsolidated Objective team in match dataset
Datapoint Data Type Description

schema_version Integer
The version of the QR schema used to
compress/decompress the QR

serial_number String
The serial number of the tablet used by
the scout to collect the data

match_number Integer The number of the qualification match

timestamp Integer
The time that the QR was generated, in
Unix time

match_collection_version_number String
The version of the Match Collection app
that was used by the scout to collect the
data

scout_name String The name of the scout

alliance_color_is_red Boolean
Whether or not the team the scout
reported data for was on the red alliance

Citrus Circuits | 2022 scouting whitepaper

team_number Integer The team's identifying number

scout_id Integer
The scout ID (1-18) of the tablet used to
collect the data

start_position String
The position a team started from at the
start of the match (Zero for no-show,
One, Two, Three or Four)

timeline Array

A list of actions performed by a team in a
match. Each action is a dictionary with
the following keys- time, an integer
between 150 and 0 representing how
many seconds have passed since the
start of the match, and action_type, a
string representing the action performed
by a robot (score_ball_high,
score_ball_low, intake, start_incap,
end_incap, or climb_attempt)

climb_level String
The rung level a team climbed to in
endgame (None, Low, Mid, High, or
Traversal)

What We Learned
Our team has learned a lot of lessons we hope to apply to future years.

(1) Over the course of the season, we drastically reduced the number of data points
collected, particularly by Objective Scouts. Based on Scout feedback, this made
it much easier for Scouts to keep track of everything (the barrage of scoring in
Rapid React was somewhat unexpected even after the Week 0 events) and
know where all the buttons were in the app. Our data accuracy improved greatly
as a result of the simplification of our system, so, in future years, we plan to
prioritize even more the reduction of data points to only collect data that is truly
necessary.

(2) Partway through this season, we began keeping a Schema Tracker spreadsheet
that lists all the data points we are collecting, what app collects that data, the
type, and when it was last updated by the different parts of our system. This
greatly helped us keep track of the names of data points to make sure they were
consistent across all parts of our system, helping to prevent data point naming
errors. For the first half of the competition season, we frequently had these

Citrus Circuits | 2022 scouting whitepaper

issues during competitions, and had to hotfix data point names, particularly in
the Viewer to ensure all the data points were displayed.

(3) We also learned more about the importance of documenting all of our subteam
processes. Particularly when our team members graduate, it is useful to have
information clearly laid out so nothing gets lost. This is also helpful for training
new members and helping them learn more about our team.

(4) This year, we created a pre-competition checklist that includes every task we
need to remember before a competition. Going through the checklist before
every competition helps ensure nothing gets forgotten, such as clearing old data
off of our tablets and packing the necessary elements of our system before we
leave.

In the future, we hope to remember these lessons we’ve learned and use them to make our
system better than ever. We have many new features we plan to implement in our apps, and
we want to continue cleaning up our code and improving our systems every year.

Please note that all competition data shown in this document is fake and has been created for
the sole purpose of this document. If you have any questions, want assistance, want help
understanding our code, or have any other input, please reach out to us via email!

Citrus Circuits | 2022 scouting whitepaper

