2024 Scouting Whitepaper

Table of Contents

L= 1 o1 = o 0T o 0 1= 41 1
o T [e oY o T 4
L 1153 o PSP SPPPPPRRPPP 4
Summary of Major Changes SiNCe 2023....... ... e e e e e eeeeeeeaeseees 6
SYSIEM OVEIVIEW. ...ttt e e e e e s s e e e e e e e s e e eass b e e e e e e s e e s annnneeeeaaeean 7

1V F= 1o T 0 | 1= o oo 7
STAMTING SCIEEN. ...t e e e e e s s e e e e e e e e s s nnnn e e e e e e s eeannnnneeeeeeeesannes 8

(@] o =To3 €1V LT @] | 1= 4o o PSP 9
Objective ColleCtion INPUL........euiiiii it e e 9
RaNAOMIZING SCOUL IDS........eiiiiiieiee ittt e e e e e e e e nneeeeans 9
Starting POSItION SCIrEEN......ccooi i e e e e e e 10

(@] o) =To3 1AV @Fo] | [=To o] g TS Tl (1Y o SRR 10

o PP 11
L] =T 0 o T 12

[To [=1 0 =TT 15
Switching Intake and Scoring BUIONS..........cuviiiiiiiiiiiicccceeeeeeeeeeeeeeeeeereee e a e 15
(T o T=To I = T 1 u (o] o T 16

= T I T o o 16

Incap Duration Using TiImMestamps.......ooooiiei oo 17
Navigation Between Auto, Teleop, and ENAgame...........cceeiiiiiiiiiiiiiicicc e 17

UNAO aNd REAO......oo e annrenee 18

10 o] =Yo7 1Y 7= Y @1 o7 4] o T 19
Subjective ColleCtion INPUL.......ooi e 19
Subjective COllECION SCrEEN.........ooiiiiiee e 20

L@ 115 0] 030 2 Y SRR 20
Seconds ClIMDEd Al......coo e 20
Quickness and Field AWArENESS.ccuiiiiiiiiiieiieeeeee et 21

(@] o =To3 (AN S 10] o (=T34 1Y 21
Match Information Edit SCre€n...........eueiiiiiiiieee e 21

The QR Schema FOrmMat.......coov i 22

[P2\ Y0 1 £ Yo 01U £ oo PSSR 23

L0 1= o o o 23

(D=1 =T oTo]) (=3 @] 1= o7 (Yo SR 24

(0] 070 Hl d i T 1 {1 25

Naming Photos and JSON FilES........eeeiiiiieiiiee e 26
Starred Teams to Organize MUltiple SCOULS...........uuuumiiiiiiiiiiiiieeeeeeeeeeeeeeeee e e e e 26
Highlighting 1o Show SCOUtiNg Progress..........ueiiiiiiieiiiiee e 27
EdItiNG EVENT K@Y ..ot e e e e e e e e e e e nnnn s 28
Stand Strategist.......cuniiiiiiiii————————————————eeeee e ———————— 29
L@ Y= = PRSP 29
Changes from Last YEar.......ccoouiiiiiiiee et e e e e e nnn e 29
[N PV T F= U o o PRSPPI 29
=Y [T T 7= = U SR PRN 30
Usage During ComPetition..........eeiiiiiiiiiiiiiee ettt e e e e 33
Y= o] IR Y=Y =Y o o) o SRR 33
Profile ManagemeEnt..........cooo e e e e eeeas 35
L0 7T g - | 37
L@ Y= V= PP 37
L0 L= o I g L= Y o o T 39
IMPOItING Data....ccoooiiiiiieiiieee e 41
1T = 43
I E= NV T =11 o 43
L LYY gl = 1= (Y T =T 44
= o TS T T L1 = 46
MALCH DELAIIS.......eeeiieiiiiiieee ettt e e e et eeeaaaas 47
Y= Lo o T ST 49
TEAM DELaAIIS. .. nnnanntrnnrnnne 50
QLT T)L (Y PP PPRS 52
Data Graphs for Specific Datapoints........cccoovieieiiii e, 53
JLE =T T =T o] e T PRSPPI 55
Rankings for Specific Datapoints........ouvvieiiiiiieeieee e 56
Stand Strategist NOTES.....cooi e 57
Last FOUr MatCRes.ot e et e e eeneee 58
[Te] oTo il 0=V =T PP 59
I o = 1 1= PSSPt 60
=Y [0 1V =T o J RSP 62
103 =T o111 Y75 PP 63
T 1S R 64
1T N =g o =Y 64
D= = B (=1 (=Y T o TR 64

L= = 66

S Yo 1T o o - T 66

@7 1[0 P-4 o] o 1= PP UPP TP 66
Y= L aIR= T Te B I 1Y = = VPP PP 67

AULO Paths. ... e 67
103 €T o111 2P 68
g oY= o 1Yo =Y o £ PR 69

[(Yo [T o] o E= T 69

RS ToTo 10l =Yo7 1= o o T 72
Interactions with TBA and StatbhotiCs........ceevi e 73
Testing and Code StaNAArAS........ccuiii it e s sarreee e e e as 74
Pulling Data from DEVICES........ueiiiiieiiiiii e e e e s e e e e e e e e e enns 74
Stand Strategist and Pit Data............ooeiiiiiiiiiiiee e 75

[y g 0T g 4] g T I = = U 76
€T T o T | 76
PiCKIiSt EQItOr....uuuiieeirrirrrssnnssnssnnnnnnsnnnnnssssmnssmmssmsnssssnnsnnssnnsnnnes 77
L@ Y=Y T 77
LY=L g T T T S e =T Vo S 77
Team Performance Comparison Graphs............cceeiiiiiiiiiiiieee e 79
REMOVING TEAMS....ceeeeieiei et e s e e nnnn e e e e e e e aaannnns 79
Updating DatapOintS..... oot 80

L@ 011 - 1] o T 80

(€ ToToTe | (=N o] 0105 T] o | PSR 81

[0 01 A o {0 1= SRR 82
ViIidEO Sy SO —————————————— 82
L0 o T 11T T) T 82
STz LT I 1= o o R 82
=SS Yo) g EoJ == T 1= 83
B2l 11 0T PP PPPPRT 83
DOCUMENTALION. .. 83

D=1 = e F= T 1 PSPPSR 83
Starting @ SCOULING SYSTEM......eeiiiii i e e e e e e 84

T LTS =T o 84

RO S OUICES. .. uuuuursnnssnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnseassassssssssssssssssssssssss s s s e e e e e e e e e e R R R R R EEEEEEEEEREEEEEEER R R R R R R R R RS 85
(@1 I AV 1 =T 0T T 01T SR 85
= | BT 0 2 T o 1< R 85
2024 Public GitHub RePOSITONES.....ccieeeieeee e 85

/1Y oo 1= 3 Lo Lo 86

SUDTEAM SEIUCTUIE. ...ttt ettt et et e e e et et e ea e e s e s eaesea s e rensenrennres 86

How to Run a 1678 System Field TeSt.....couu e 86
2= 11 T PPN 87
Scout Training and ManagemeENt............eiiii i 88
SPR Calculation WalKtNroUGN.ooiiiieee e 89
e 1Sy o [(TS Tl] o £ TSP PPRPPON 90
{70 T =1 oo Yo OSSP 91
S T=Y= LT T T =Y 1= PR 91
ComPpeEtition ROIES.cooeeieeeeeee e 92
L F= U0 11 T PP 94

Introduction

History

Citrus Circuits’ electronic scouting system was first developed and used during the 2013 FRC
season of Ultimate Ascent. The team had previously used a paper scouting system but was
overwhelmed by the management issues that arose when scouting 100 teams in its division at
the World Championship. A software development team of four students created the original

system that has since grown into a full subteam of 21 students with two different ends and six

apps.

The system was structured in 2013 with two relatively unique attributes: (1) collection using
Android tablets for both objective scorings—each focused on a single robot—and subjective
ordinal rankings of robots’ driving strengths and abilities within each match alliance, and (2)
delivery of collected and processed data to a cell phone app in near real-time to be used by the
drive team to prepare for matches. The objective and subjective data were quantitatively
combined using weighted scoring to provide two ranked priority draft lists for first and second
picks for alliance selection before the playoffs. The system maintains that basic structure today

with additional attributes described further in this white paper.

The system proved successful in its initial use at the 2013 Central Valley Regional when 1678

fully assembled an alliance based on collected scouting data to win the event from the 6th

seed. The system again proved its worth at the Championship, where 1678 won the Curie
Division using a well-noted drafting strategy that left the top teams unable to ally together. The
entire system ran with eight Scouts and two programmers, hard-wired together through a

Raspberry Pi.

The scouting system has evolved in several ways, addressing many issues along the way.
Initially, the system was wired together but switched to Bluetooth communication in 2014 to
avoid the prohibition on wifi while increasing the number of available ports for tablets. The first
significant revision occurred in 2015 with the first multi-object game presented by FIRST.
However, the scouting system failed to provide usable data at the first event of the year
although it was up and running later in the season. An opportunity to prepare a picklist with 118
Robonauts at Championships led to significant advances in data collection and presentation.
Those advances included further development of the Picklist Editor, added visualization in both
the Viewer and Picklist Editor, and a deeper use of the editor during the meeting. In 2016, the
Software Scouting team created a project management schedule that delivered substantial
improvements to the system. Another app was added in 2016 to collect specific data from pit
visits. In 2017, the crew of Scouts was expanded to assign three Scouts to each robot for
collecting objective data to improve accuracy. In 2018, Bluetooth became less reliable with the
prevalence of smartphones at events, and Match Collection was updated to use QR codes to

transfer data.

In 2020, the Match Collection, Pit Collection, and Viewer apps were rewritten in Kotlin for
Android phones. Support for the iPhone Viewer was dropped as fewer students were familiar
with the Swift language. The team acquired Google Pixel phones for drive team members to

replace iPhones.

The system has relied on several online database programs, first adopting Firebase and then
moving to MongoDB in 2020. At the first competition in 2020, the system did not deliver data,
but the COVID-19 pandemic terminated the season before the system could be updated
further. In 2021, the subteam continued to meet remotely and worked on improving the
structure of the 2020 system without the need to focus on a specific game. The 2022 system
resulted from substantial improvements since the Kotlin rewrite in 2020, and the revisions set

the foundation for future features. In 2023, one major change was switching from our web

server communication interface from Cardinal (described in earlier white papers) to Grosbeak.
The switch was made because, due to a lack of documentation, it was difficult to maintain

Cardinal, and we had already been using Grosbeak for the picklist in Viewer.

The current 2024 system builds on the successful upgrades in 2023, which added new features

to Viewer and created the new Stand Strategist and OverRate apps.

Summary of Major Changes Since 2023

Throughout the 2024 season, we made many changes to ensure our apps were efficient and
had all the needed features. This season, we switched our new app for our Stand Strategists to
record notes about an alliance and collect subjective data from Windows to Android. They had
been using Google Sheets before 2023, which was unreliable due to the lack of stable WiFi
connections at events. Additionally, we made significant progress in transitioning to Jetpack
Compose, Google’s modern toolkit for building Ul for Android, instead of XML. We used
Compose to create several screens in our apps, including programming Stand Strategist solely
in Kotlin and Compose. We also refined our Viewer app by adding complex features, including
auto paths and comparison bars, to our Team Details screen. Finally, we created an entirely

new app, Overrate, to help Strategists rank and rate teams in a competition live.

Match Collection was updated for structured playoff scouting. During playoffs, we had one of
our top scouts (based on scout precision rankings) and one of our strategists watching each
robot on the field (6 scouts and 6 strategists total). The scouts would use the Playoff Scouting
part of the Match Collection app to record the amount and location of Notes scored by the
robot. The strategists would take notes on their assigned robot, and at the end of the match,
the scouts would show the strategists their collected data. The data would then be posted in a
Slack thread organized by playoff alliance, and the match strategist and drive team would use
the data to create match strategies. In the past, we had no structured form of scouting during
playoffs, but to enhance our competitiveness (especially at the World Championships), we

thought it was necessary to collect this extra data.

System Overview

The Citrus Circuits scouting system is separated into three main stages: collection, processing,
and visualization. Collection consists of the Match Collection app, the Pit Collection app, and
the Stand Strategist app. In the processing stage, the Server organizes and runs calculations
on the data, which the Viewer app and the Picklist Editor can then visualize by pulling the data

through Grosbeak.

Scouts use three different collection apps at competitions: the Match Collection app, the Pit

Collection app, and the Stand Strategist app.
The users of the three collection apps are as follows:
e Match Collection (Objective): Scouts
e Match Collection (Subjective): Subjective Scouts
e Match Collection (Playoff Scouting): selected Scouts
e Stand Strategist: Stand Strategists and Subjective Scouts
e Pit Collection (Objective): Pit Scout (Match Strategist with assistance from Citrus Seals)

e Pit Collection (Subjective): Team members focused on 1678’s alliance partners (Citrus

Seals and mentors)

Match Collection

Scouts in the stands use the Match Collection app during matches to collect quantitative and
subjective performance data on robots. The app runs on Lenovo Android tablets and was
developed with Android Studio using Kotlin and XML. It has three modes: Objective Collection,
Subjective Collection, and Playoffs Scouting. During each qualification match, there are 18

Objective Scouts (three per robot) and 2 Super Scouts (one per alliance).

e Objective Collection collects quantitative data such as a robot’s scoring and intake

statistics.

e Subjective Scouts use Subjective Collection to rank the performance of each robot in
an alliance qualitatively (for example, the Quickness between the robots in the Red

alliance).

e Playoffs Scouting allows Scouts to record Amp, Lob Ferry, Unamplified Speaker, and
Amplified Speaker scores during playoff matches. We reserve Playoffs Scouting for

Championships.

8:34PM £ 5

Event Key: 2024arc
Version: 1.0.1

Objective Collection

Subjective Collection

Playoffs

Objective/Subjective/Playoff screen

Starting Screen

The Objective/Subjective/Playoff starting screen is the first in the app. From here, the user can

enter one of these three different scouting modes by clicking on the corresponding method.

Obijective Collection

Objective Collection Input

Match Number
5
T T

Automatic Assignment

Alison Lin

Scout ID: 18

Old QRs Proceed

Version: 1.0.1

Objective Collection Input screen

The Objective Collection Input screen has multiple elements. Firstly, the Assignment button can
set the assignment to Automatic Assignment or Override Assignment. Automatic Assignment
pre-sets the team and the alliance color they are scouting. On the other hand, Override
Assignment allows the scout to change the alliance color and team number they are scouting,
along with overriding some features later in the app. Scouts can edit the match number, scout
name, or scout ID in the input screen. Furthermore, an “Old QRs” button allows scouts to view
all past QR codes in case the scout forgets to scan the QR code after a match. Finally, scouts

use the Proceed button to transition onto the Objective Collection Starting Position Screen.

Randomizing Scout IDs

Match Collection randomizes Scout ID assignments to minimize concentrating errors Scouts
make on a few robots. A group of three Scouts will watch a single robot, and then all three

groups will shuffle for the next match. This feature ensures a scout will scout different robots

throughout the competition, which helps prevent certain teams’ data from becoming inaccurate
due to less competent scouts consistently scouting them. It also helps us compare the scouts’
performance (see Scout Precision Ranking (SPR) in Server) and better check our data against

The Blue Alliance. These random assignments come from a file resource with 100+ randomized

orders of Scout IDs generated ahead of the competition.

Starting Position Screen

HAS
4 PRELOAD

1345

p No Show

Switch
1 Orientation

\ Proceed

Objective Starting Position screen

On the Starting Position screen, Scouts must input their robot’s starting position by pressing
one of the four starting position buttons. The Scout presses the “No Show” button if the robot
is not on the field. There is also a preload button on the screen, which Scouts use to record
whether or not the robot has a preloaded Note. Scouts use the “Switch Orientation” button
when they do not get the optimal location in the stands and have to switch the app's
orientation to match their view of the field. We use the data collected from the Starting Position

and Auto screens to formulate auto paths.

Objective Collection Screen

This year, we implemented map scouting for our Objective Match Collection app, an app
structure that creates a map of the field and positions collection buttons at corresponding
locations on the map. This change allowed us to better collect when robots did specific actions

in certain areas of the field.

Auto

The Auto screen depicts a diagram of the alliance’s side of the field, with a different set of
buttons depending on whether the team has a Note. While on the Auto screen, users can also

long press the timer to reset it, this feature is disabled once any action is inputted.

72401 & - “H

No Preload

Failed - 0

Intake Other - 0

\ 134

3 6
Start Incap
1678
7
AUTO - 149
$ To Teleop

Auto Intake

The Auto intake screen has nine buttons for recording intakes: one for each pre-placed Note

and an additional button called Intake Other for intaking Notes that were not in their original

positions (because of dropping/ferrying or failed scores). Collecting the location of intaken

Notes helps us track the auto paths teams used.

a4

723 0 & -

SCORE AMP: 0 Has Preload

SCORE
SPEAKER: Intake Other - 0
0
Start Incap
1678
AUTO - 145
To Teleop

Auto Scoring
The Auto scoring screen consists of four scoring buttons, one for each scoring action a team

can take with a Note and a Fail button.

Teleop

After switching to Teleop, the field diagram changes from showing only half to showing the
entire field. Like the Auto screens, it has a different set of buttons depending on whether or not

the team has a Note.

a4

No Preload

INTAKE AMP: Failed - 0

0

Score Amplify - 0

INTAKE CENTER: INTAKE FAR:
g 0 Start Incap
1678
INTAKE POACH:
0 TELEOP - 136
To Endgame

Teleop Intake

The Teleop intake screen has four intake buttons for collecting intake instances from different
locations. These areas include the opposing Wing, the center of the field, near the Amp, and

near the opposing Source.

SCORE AMP: 0

SCORE
SPEAKER:
0

Start Incap

1678

TELEOP - 127

Teleop Scoring

The Teleop scoring screen has seven buttons to collect what teams do with Notes they get
during Teleop. Originally, the screen only had six buttons. However, right before the
Championships, we split Ferry into Ferry Shoot (shooting a Note into the Wing) and Ferry Drive

(driving up and dropping the Note) due to changes in our cycle time calculations.

Endgame

7:25 0 & -

Has Preload

Score Amplify - 0

NOT ATTEMPTED

FAILED

NOT PARKED Start Incap

1678

ONSTAGE

TELEOP - 39

Proceed

Endgame Screen

This year, we added an entire screen for collecting Endgame data, unlike last year when we
had a popup. It consists of a Stage diagram with four toggle buttons, one for each of the
chains on the Stage, and two other buttons (for scoring in the Trap and the Fail button). This
change allowed us to track which chain a team climbed on, whether or not they failed to climb
on any chain, or if they parked. Initially, the Trap button was a toggle, too, but when we found
that some teams had scored multiple traps in a single match, we changed it to a counter, just
like the other scoring buttons. The app disables the Trap button if the robot does not have a

Note.

Switching Intake and Scoring Buttons

Because robots can only hold one Note at a time, the intake and scoring buttons are not

displayed simultaneously. Whenever a scout taps an intake button, the app switches all the

intake buttons to the scoring buttons and vice versa. Certain buttons like Undo, Redo, and

Incap will always remain.

Preload Button

Scouts can change whether the robot has a preloaded Note as long as no actions have been
taken other than switching between Auto, Teleop, and Endgame. This feature is helpful in case
it is hard to tell whether the robot has a preload so that the scout can quickly change it. Note

that this button replaces the Undo and Redo buttons until the user inputs other actions.

Fail Button
7240 & - Ry
Und
Failed - 1
SCORE :
SPEAKER: / Score Amplify - 0
0 FERRY)
SHOOT: DROP:
0 0 Start Incap
\, 1678
FERRY
DRIVE: TELEOP - 92
0
To Endgame
Failing

This year, we changed our Failed button to collect which action they failed (e.g. Score Speaker,
Amp, Trap, or Ferry), unlike last year when we could only collect that they failed to score a

gamepiece. This change was significant in calculating success rates for each action. Note that

after pressing the Failed button, certain buttons, such as the Drop and Ferry Drive buttons, are

disabled until the user undoes the fail action or presses another button.

Incap Duration Using Timestamps

7240 & - T
SCORE AMP: 0 sutineap REAO
Failed - 0
SCORE i
SPEAKER: Score Amplify - 0
0 FERRY)
SHOOT: DROP:
0 0 End Incap
1678
FERRY
DRIVE: TELEOP - 118
0
To Endgame
Incap

In Teleop and Endgame only, Scouts mark a robot as incapacitated when it is disabled or its
drivetrain movement is significantly impaired. A toggle button records the start/stop
timestamps of the incapacitation period. This allows us to find the total incap time of a robot
during a match—note that if a team is marked incap for less than 8 seconds, the incap time is

considered inconsequential and thus disregarded in the match’s data.

Navigation Between Auto, Teleop, and Endgame

Like previous years, we had a button to progress the match from Auto to Teleop, but with the

Endgame screen this year, we added a To Endgame button to switch from Teleop to Endgame.

With the changes to the Failed button, we also had to disable the Proceed buttons while the
user was failing an action. Additionally, we added the capability to return to the previous screen
if the user didn’t input actions after switching screens. This process is initiated by long pressing
the To Endgame (to return from Teleop back to Auto) or Proceed (to return from Endgame back
to Teleop) buttons. Note that because teams could potentially score multiple Traps in a match,
we added the capability to do this on the Endgame screen unless they are Incap, failing a
score, or Onstage. If the user is on override mode, they can also proceed using the Proceed

button past the Endgame screen, a feature that allows for faster field testing.

Undo and Redo

8:43 M & -

SCORE AMP: 0

SCORE
SPEAKER:
1

Start Incap

1678

TELEOP - 134

To Endgame

Undo and Redo Buttons

Like in previous years, we had buttons for undoing and redoing recorded actions. When the
user presses the Undo or Redo button, it undoes or redoes the most recent action recorded or
undone, respectively. Due to the Fail button changes, undoing or redoing a failed action undoes

or redoes both the fail and the actual action.

Subjective Collection

Throughout the competition, we have two Subjective Scouts scouting at all times. Each Scout
watches all three robots in one alliance and ranks the robots against each other in quickness
and field awareness. They also record how many seconds are left in the match when the robot

goes to climb and if the team harmonizes.

Subjective Collection Input

7:58 PM &

Match Number

12

Automatic Assignment

Team Two

Team Three
Alison Lin

Old QRs Proceed

Version: 1.0.1

Subjective Collection Input Screen

The Subjective Collection Input Screen is similar to the input screen for Objective Collection.
The significant differences are that each Subjective Scout collects data for all three teams of an
alliance, and instead of assigning teams using Scout IDs, assignments are made based on

which color alliance they’re scouting.

Subjective Collection Screen

7:59 PM & oxXd

Climb After Secs Climb At Quickness Field Awareness
1678 20 + - 2+ - 3+
8048 ® - 10+ N - 2 %
2035 - 0 + - 3+ -1+
Proceed

Subjective Collection Screen

Besides changing the datapoints we are collecting this year, the main difference with the
Subjective Collection Screen is that we removed the match timer. We made this change as the
Subjective Scouts no longer collected whether a team plays defense, subsequently removing

the need to collect timestamps, as we did last year for a defense checkbox.

Climb After

Marking Climb After indicates whether a team climbs on a chain that already has another robot
on it. Strategists use this datapoint to determine whether and how consistently a team can

harmonize.

Seconds Climbed At

Subjective Scouts mark how many seconds are left in the match when a robot goes to climb.

Seconds Climb At can be changed in increments of 10 up to 60 seconds. This datapoint

provides insight into how long a robot needs to climb successfully so that Strategists can plan

the Endgame timings of the match strategy.

Quickness and Field Awareness

Subjective Scouts rank each robot on an alliance relative to the other robots by Quickness and
Field Awareness. Ranks are from 1 to 3, with 3 indicating the best robot in that category in the
alliance. Quickness is based on the speed and maneuverability of the robot, while Field
Awareness is based on how aware the robot is of where it is on the field, where other robots
are on the field, where other Notes are on the field, how well the robot scores, and how smooth

its cycles are.
Objective & Subjective

Match Information Edit Screen

7:59 PM &

Match Number

12

Team One
1678
Alison Lin
Team Two
8048
Team Three S ——

2035

Match Information Edit Screen (Subjective)

The Scout enters the Match Information Edit Screen after pressing the Proceed Button on
either the Input Screen when in Subjective Collection or the Endgame screen in Objective
Collection. After a match, the Scout can view and change match information, including the
match number, team number(s), alliance color, and scout name. This screen is used when the

Scout accidentally scouted the wrong robot or inputs inaccurate information.

The QR Schema Format

7:59 PM & OBy

Match: 12

Team Numbers:
1678, 8048, 2035

PROCEED

QR code generator screen (Subjective)

QR codes follow a specific format defined in Schema to reduce their size. Letters of the
alphabet represent Datapoint names, and special symbols such as ‘$.” delimit each section and
datapoint. This way, the app quickly generates QR codes that are small enough to contain all

match data. A smaller QR code makes scanning easier, and large QRs may fail to render.

Playoffs Scouting

7:10 & 4
Reset
Amp:) Lob Ferry:
0 0
Unamplified Speaker:) Amplified Speaker:
(1] 0

Playoffs Scouting Screen

We only used Playoffs Scouting at the Championship this season. It consists of a screen with
counter buttons for four specific actions: Amp scoring, Lob Ferrying (if a robot ferries by
shooting over the stage), Unamplified Speaker scoring, and Amplified Speaker scoring. When a
Scout taps a counter button, it increments that action’s counter. If a Scout taps the
corresponding subtraction button, it decrements that action’s counter. At the end of the match,
Scouts record the number of each scoring type and share the data in Slack (Citrus Circuits’

communication platform).

Pit Collection

The Match Strategist uses the Pit Collection app with the assistance of other strategists to
collect mechanical data and robot pictures. It runs on Android phones, and we built it with
Kotlin and XML. This year, we completely revamped the app using the Jetpack Compose

framework.

All the main features from previous years are still present in this year’s Pit Collection app, but

we discontinued a few, such as the pit map and flagging, due to their lack of use in previous
years.

Datapoints Collected

& 2024arc Version: 1.0.0

Weight (Ibs.)
122.0

Swerve

A

Doesn't Have Trap
Mechanism

Data Collection Screen

The Match Strategist uses the Pit Collection app to collect several datapoints about a robot’s

physical characteristics. These include whether or not the robot has a Speaker, Amp, Trap,

and/or climb mechanism, its weight, and what kind of drivetrain it has. In the screenshot above,

green signifies the completion of an input.

Robot Photos

& 2024arc Version: 1.0.0

R T o
4: Full Robot

Robot Photo Screen

In past years, the Match Strategist used the Pit Collection to collect pictures of each robot’s
intake, indexer, shooter, climber, and drivetrain, and two photos of the entire robot from
different angles. However, in this year’s app, there are only two categories of robot pictures: the
full robot and side profile, as those are enough to get a good idea of what a robot looks like.
These pictures are taken in the app using the phone camera and then stored in a folder called
robot_pictures in the local Downloads folder. The Developers pull the robot_pictures
folder from the Server computer via a USB connection. The pictures are named with the team

number first, followed by the picture angle, for example, 1678_full_robot. jpg or

1678_side. jpg. Users can preview pictures by holding down the camera icon on the team

list screen.

Naming Photos and JSON Files

The app stores the data for every event key in a separate folder in the Downloads folder. Each
event key’s specific folder is named the event key, e.g., 2025dal. The Pit Collection app then

stores the collected data in its folder as a JSON file called pit_data. json for each event key.

Starred Teams to Organize Multiple Scouts

2024arc Version: 1.0.0

Edit Event Key: D

Confirm
Key

Team List Screen with Starred Teams

To organize scouting teams with multiple Pit Scouts, a user can tap on the star icon in the list
of teams to turn the star yellow. This way, Pit Scouts can divide the teams among themselves.

Pit Scouts star teams individually to allow for nonnumerical pit setup orders.

Highlighting to Show Scouting Progress

2024arc Version: 1.0.0

Edit Event Key: D E:;‘ﬁrm

1168

o]
»*

1678

%

Team List Screen with Highlighted Teams

When looking at the list of teams, the color of each team’s cell depends on what kind of data
the Pit Scout has collected on that team. If there is no data on a team, the cell appears gray; if
there is partial data (only pictures or only data), the cell appears cyan; and if there are both
pictures and data, the cell appears green. There are also icons signifying the collection status:
the download icon indicates that the team has data; the camera icon means the team has

photos. The highlighting allows the Pit Scout to see which data still needs to be collected.

Editing Event Key

Incorrect Event Key

Enter an event key
{ 2024arc

Confirm

Event Key Screen

Users can change which event the Pit Collection app pulls a team list from by changing the
event key. The Blue Alliance provides event keys, and if a user inputs an invalid event key, an
error screen prompts the user to reenter a valid event key. Defaulting to the most recent event,

if the user inputs another invalid event key, the screen reopens until they input a valid key.

Stand Strategist

Overview

Stand Strategist is an app for Stand Strategists to take notes about teams in an alliance in each
match. At the competition, our Stand Strategists record detailed notes and observations about
each team for use during picklist meetings. We previously used Google Sheets to organize
these notes but found that its offline support (which is required at events where an internet
connection is infeasible) did not suit our needs. We originally developed Stand Strategist as an
offline-first, local desktop app running on Windows, macQOS, and Linux, allowing our Stand
Strategists to take notes on their own laptops even with the connectivity constraints of a
competition environment. Stand Strategist is now written in Kotlin and built using the Compose

Multiplatform Ul framework by JetBrains.

Changes from Last Year

The Stand Strategist app was changed from a Windows-based desktop app to an Android app
this season since we previously ran into problems with the battery life of the Stand Strategists’
laptops. This resulted in many structural changes, but we kept the user interface as close as
possible to what it was before. Throughout the season, we also added several new features to
improve user experience. We updated the datapoints to better reflect aspects of Crescendo
and replaced and removed some datapoints to make it easier for the Stand Strategists to
consolidate and collect notes. We also added new ways to organize profiles within the app and
export profile data. Finally, we allowed users to search for teams by team number and a given

defense rating.

Navigation

Stand Strategist users can navigate between the data collection pages by swiping left and right

on the tablet screen or through specific keyboard shortcuts. When the user navigates through

https://www.jetbrains.com/lp/compose-multiplatform/
https://www.jetbrains.com/lp/compose-multiplatform/

all the pages for a match, the match number is incremented or decremented accordingly. There

are also several buttons the user can press to open specific pages or popups.

Entering Data

When entering data into Stand Strategist at a competition, the user is first prompted to select
or create a user profile (see Profile Management). If the user has created a new profile, they will

then be asked to select a match schedule file:

Select match schedule

Select a match schedule file from your device to continue.

Current profile: Profile #1

(& Switch profile)

@ Open file picker

Match Schedule Selection Screen

Selecting the ‘Open file picker’ button opens the system file dialog, which allows the user to

select a match schedule JSON file generated by our Server.

Once a match schedule is selected, the Match Info page is displayed. The Match Info page
contains the match number, the teams in the match on the user’s selected alliance, and two
navigation buttons. Pressing on a team number on the Match Info page will bring the user to

that team’s Team Screen.

| & Switch match)

B Match Info

Match 1 Teams

7056 9496 6090

= Openteamslist)

Match Info page

Then, during the match, the user can enter data and observations on the Team-in-Match Data

page and the Team Data page:

:22 Blue B Team-in-Match Data

7056

Played Defense

Defense Rating

Broken Mechanism
Enter text
Match Notes

Enter text

9496

Played Defense

Defense Rating

Broken Mechanism
Enter text
Match Notes

Enter text

6090

Played Defense

Defense Rating

Broken Mechanism

‘ ‘Entertext

Match Notes

Enter text

7056

Can Go Under Stage

Can Intake Ground

Can Only Shoot From Specific Area
N/A

Auto Strategies

’ Enter text

Strengths

Team-in-Match Data page

2 Blue

9496

Can Go Under Stage

Can Intake Ground

Can Only Shoot From Specific Area
N/A

Auto Strategies
Enter text

Strengths

B Team Data

6090

Can Go Under Stage

Can Intake Ground
Can Only Shoot From Specific Area
N/A
Auto Strategies
‘ ‘ Enter text

Strengths

‘ Enter text ‘ ‘ Enter text Enter text

EELGESES Weaknesses U CELGEEES

‘ Enter text ‘ ‘ Enter text Enter text

Team Notes Team Notes Team Notes

Team Data page

In order to give our strategists a wider range of information about each robot, we collect these
datapoints: “Can Go Under Stage”, “Can Intake Ground”, “Can Only Shoot From Specific

Areas”, “Auto Strategies”, “Strengths”, “Weaknesses”, and “Team Notes”.

The Team-in-Match Data page records a team’s performance within a specific match. The data
entered on this page is match-specific, meaning that the data for a team in a match will only

show up for that team in that match.

The Team Data page records more general comments on a team’s overall performance
throughout all its matches. The data entered on the Team Data page for a given team is shown
and updated for all its matches throughout the entire competition. All of a team’s notes can be
viewed by clicking on a team number from the team’s list, searching a team number with the

search bar, or clicking on a team number on the Match Info page.

< Team 1678

Overall Data Match 9 Match 22

Can Go Under Stage [3256 360 1678 1678 354 2075

Played Defense Played Defense
Can Intake Ground [V o e

Defense Rating Defense Rating
Can Only Shoot From Specific Area
N/A

Broken Mechanism Broken Mechanism
Auto Strategies o

Enter text

‘ Enter text

Enter text

Match Notes Match Notes
Strengths)

Enter text ‘ Enter text
Enter text

Weaknesses

Enter text ‘

Team Notes

Team Overall Data page

Usage During Competition

Throughout the competition, the two Stand Strategists use this app to take notes on different
teams. Then, during the picklist meeting, the Stand Strategists use these notes to give more
context to the rest of our data. This lets us know if any numbers might be inflated or otherwise
skewed and also gives us a way to keep track of observations not recorded by the rest of the

scouting system. All of this gives us greater insight into teams when building our picklist.

Match Selection

By clicking the controller icon in the navigation bar, the user can open the Match Selection tab,

which shows a list of every match in the match schedule:

B Match Info

Match 1 Teams

Search...
1
7056, 9496, 6090

2
4206, 3276, 7048

8]

Match Schedule popup

Due to our strategists not having any data on the other robots on the field going into the first
few qualification matches, our Stand Strategists wanted to scout practice matches in addition
to normal qualification matches, so we also implemented the creation and deletion of custom
matches. By clicking the ‘Add New Match’ button, users can create a new match. Users can

also click on a match to edit it:

‘ Search... ‘ Add New Match
1

7056, 9496, 6090

T
Match Number
1 ‘

Blue Alliance Teams

7056 ‘ ‘9496 ‘ ‘6090 ‘

Red Alliance Teams

4499 ‘ ‘6424 ‘ ‘ 353 ‘

2
42086, 3276, 7048

3
3489, 1982, 4946

Edit Match Schedule popup

Profile Management

Choose a profile

Profiles
+ Create new profile

Nathan

—):| Use last profile: Nathan
Edwin

Profile selection screen, shown when the app opens

At competitions, we sometimes need multiple Stand Strategists to collect data with a limited
number of tablets. To address this, we implemented profiles, which separate different users’

data. The profile management screen shows various actions that can be taken on profiles:

¢ Profile Management

+ Create new profile
Profile: Edwin

B switch to this profile

\ E) Export profile...)

(® import...)

(B3 Run operation)

Nathan

(&£ Rename profile)

I i Deetoprofie)

Profile operations

J. Merge this profile into another profile
\ J’, Merge another profile into this profile)

\ rD Duplicate this profile)

Profile management screen

We also decided to implement various options for importing and exporting profiles, as well as
the ability to merge profiles. Since profile operations could get complex, we built a screen for

creating and running these:

< Profile Operation

P Run operation

Inputs

(4+ Addinput...)
’ Outputs

From existing profile + Add output...

Edwin

> Merge inputs 2 To .zip file on device

Location selected: Documents

From folder on device (Change)

Folder selected: Nathan

| Change)

Profile operation screen

The profile operation screen is a common interface for importing, exporting, and merging

profiles in various formats.

On the device running Stand Strategist, each profile has a separate folder in the storage
directory, with each folder containing the profile’s match schedule, profile-specific settings, and

collected data.

OverRate

Overview

OverRate is an Android app newly created for the 2024 season built entirely using Jetpack
Compose. The app is designed for strategists to rate and rank teams relative to each other in
real-time during an event. Users can add teams to a list, give them numeric ratings, reorder
them, and organize them with dividers. The app is intentionally designed to be flexible and

support a wide range of use cases and does not promote any particular method of assigning

https://developer.android.com/develop/ui/compose
https://developer.android.com/develop/ui/compose

ratings or organizing teams. For example, a strategist mentor used it on the first day to identify
teams that were unlikely to fit well into our alliance and on the second day to rank groups of
teams with particular attributes relative to each other. The stored data is not used anywhere

else in the scouting system, and so the app serves solely as a scratch pad.

OverRate

12345 Rank 4

23456 Rank3

13579 Rank7

54321 Rank 12

OverRate’s main list view

Using the App

23456 Rank3

12345 Rank 4

Nividar

13579 Rank7

54321 Rank12

Reordering teams

The main list can contain teams and dividers. Each team has an associated rating, which can
be edited using the plus and minus buttons. Each item in the list has a drag handle for

reordering items. The user can long press items to edit their details or delete them.

Add team

Enter team number
‘ 12 \

12191

12345

12456

Enter comment

Adding a team

The user can add a team to the list by opening a dialog and entering a team number. If a team
list has been uploaded, the app shows suggested team numbers from the team list. The user
can also add an optional comment, which will show next to the team number. The user can

also add dividers separately and edit divider labels.

At the end of a competition, the user can use the Clear button to clear the entire list.

Importing Data

< Import data

Picklist

Import a picklist to add its teams to the list.

1 Open file picker

Imported teams

Choose a team list to import teams.
Imported teams are shown as suggestions
when adding teams.

4 Open file picker

You currently have 45 team(s) imported.

N\

= Clear teams)
/

e

Page for importing data

The user can import teams from a team list to show as suggestions when adding new teams or

import a picklist to add its teams to the list.

When importing teams from a team list, the user can select a team list file (the same as the
team list file used by the rest of the scouting system) to add its teams to the app’s internal list
of imported teams. If multiple team lists are added, they are merged. The user can see how

many teams are imported and clear the saved teams.

To import a picklist, the user first exports the Main Editor sheet of the competition’s Picklist
Editor to a CSV file and then select the file from the app. Then, the user can select which teams
to import, and the selected teams are added to the main list. The teams added to the main list

also each have a comment showing the original rank of the team in the imported picklist.

Import picklist

/"'—\\
(& Select all teams \
Q. Search teams

23456
34567
45678
18749
24680
54321
65432
76543

87654

(Cancel) Add 5 team(s)

Importing a picklist

Viewer

Viewer is an Android app written in the Kotlin programming language. The app allows
strategists to review, organize, and visualize processed scouting data live during competition to
create educated match strategies. This year, we have integrated Kotlin’s Jetpack Compose

framework into many of Viewer’s screens.

Navigation

Match Schedule
Rankings
Picklist
Pickability
Team List

Elim Alliance Details
Groups

Preferences

Last Updated:
05/08/24 07:56:16 PM

Navigation Sidebar

Viewer uses a sidebar to help users navigate through its primary pages. There are also various

locations where the user can redirect to other related pages (e.g., from the Match Schedule to a

Match Details page). Users can view the sidebar from any screen or page in the app to

optimize navigation—additionally, the top displays the current event and version number.

User Preferences

7305 5 @ & - OLTEAB 7305 5 @ & - OLTEAR
FIELD FIELD
User's Datapoints User's Datapoints
Matches Played Auto
Total Amp Success Rate :::g :irlre"celsFerries
Total Speaker Suocess Rate AutoTotal Intakes
T —

Team Datapoints Preferences List TIM Datapoints Preferences List

In the Preferences page, users can change which datapoints are displayed in the app. This
feature is essential because Viewer has multiple users; one user may want to display more data
on a team’s intake positions, while another may want more data on a team’s endgame. Viewer
saves the selected datapoints in a file stored in the Downloads folder on the device, so they
don’t reset after closing or updating the app. Viewer has multiple profiles, allowing users to
have their own different default list of datapoints that the app displays. The only new feature
added to the Preferences page in 2024 was the addition of a selector for Team-in-Match

datapoints to be displayed in the Match Details screen.

Preferences
Version 1.0.0

Username
strategist

< ¢ Star our matches

Ow= 2024arc

Edit schedule key
(o- 2024arc
v Submit keys

(Edit event key

Preferences Screen

In addition, from the Preferences page, the user can change the displayed event, allowing the
user to look at information from previous events. There is also a button to star all our matches,

allowing users to see them when filtering for all starred matches on the Match Schedule page.

Match Schedule

OLTELE
zQ Filter and search v
Q Search
Filter
(? All matches -
All matches v/ Done
Our matches 69
Starred matches 44

=

1071 3161 5996

354 VAVA!

3707 341

6639 34

4206 857

4946 3070

6865 120

Match Schedule

The Match Schedule page displays the match schedule, including which teams are in each
match, the total match score and RPs earned. Viewer displays predicted data for unplayed
matches. A checkmark icon is displayed below the match number if the match has been

completed and a clock if it has yet to be played. The alliance that won the match is marked
with a black border. A note icon is also displayed if the alliance earns the Melody RP, and a

chain icon is displayed if it earns the Ensemble RP.

Users can use a search bar to filter matches by a team number and submit the search to go

directly to the team’s Team Details page. A drop-down in the search menu allows filtering by All

Matches, Our Matches, or Starred Matches. A user can star a match by long pressing it, and a
star symbol will appear above the match number. If a team is starred, the matches they play in
will be highlighted. The list of starred matches is saved to a file in the Downloads folder, so they

aren’t reset if the app is reopened.

A new feature was added after Week 6 this year to have the Match Schedule automatically
scroll to the most recently played match whenever the page is opened unless the user was

previously looking at a Match Details page.

Match Details

Actual Score Actual Score
41 133
Actual Melody RP Actual Melody RP
0 1
Actual Ensemble RP 4 Actual Ensemble RP
0 1
Win Chance Win Chance
0.0% 100.0%
Team 6865 7589 6036 1168 2231 2883
Current
0.3 1.1 1.7 1.6 2.1 1.6
Avg RPs
Auto
Start 4 2 4 3 4 2
Position
Has
T T T T T T
Preload
Scored
F F F T T T
Preload
Auto Total 0 0 0 3 1 9
Notes
Auto Total
Failed 1 1 1 0 2 1

Match Details for Played Match

After tapping on a match in the Match Schedule page, the match’s Match Details page opens.
If the match is unplayed, the datapoints displayed will be predictions and averages. If played,
the datapoints display the data collected by our scouts and data pulled from The Blue Alliance.
The teams in the alliance that won the match are bolded and underlined. In the header,
alliance-specific data is displayed (e.g., predicted score); in the data section, a table displays
team data. Users can access multiple screens through various shortcut buttons to improve
navigation. These include clicking on a team number to go to the team’s Team Details page
and a few newly added shortcuts such as long pressing on Current Avg RPs to go to the
Rankings page, long pressing rankable datapoints to show the rankings page for that
datapoint, and long pressing a datapoint from the Auto category to open the Auto Paths page
for that team. Another feature that was added this year was having the displayed datapoints be

affected by the user’s datapoint preferences.

Team List

QA0U42%

Team List

4
Team 4 ELEMENT

16
Bomb Squad

34
Rockets

120
Youth Tech Academy Red Dragons

231
High Voltage

341
Miss Daisy

353
POBots

354
G-House Pirates
< -

Team List

The Team List page allows users to view a list of all teams participating in the event. Users can
also star teams by tapping to the right of the team number. Users can go to the Team Details
page by clicking on a team. On the Match Schedule page, a match with a starred team turns a

light yellow; if it has more than one starred team, the match will turn a darker yellow.

Team Details

OLTEJdDd

VS 1678

Citrus Circuits

AUTO PATHS

See Matches -

Notes (click below to edit)

Team Notes
Matches Played 10
Current RPs 34
Pred. RPs 34.0
Current Avg RPs 3.4
Current Rank 2
Pred. Rank 2
First Pickability 91.3
1 Total Amp 100.0%
Success Rate
4 Total Speaker 92.3%
Success Rate
4 Max Total Intakes 24
1 Average Total 63.1

Team Details

Every team at the competition has a Team Details page featuring calculated datapoints such as

averages, standard deviations, and more. Rankings are shown on the left side column to

display the team's ranking for that specific datapoint compared to other teams.

1678 [

Citrus Circuits

AUTO PATHS

==T"AUYC ™ax rovar S

Notes

13 Auto SD Total Notes 1.3

47 Auto Average Total 0.8
Failed Notes

29 Auto Max Total 2
Failed Notes

41 Auto SD Total Failed 0.7
Notes

1 Auto Average 3.9
Speaker

1 Auto Max Speaker 5

13 Auto SD Speaker 1.3

47 Auto Average Failed 0.8
Speaker

29 Auto Max Failed 2
Speaker

41 Auto SD Failed 0.7
Speaker

15 Auto Speaker 83.0%
Success Rate

1 Auto Average Amp 0.0

Data Bars

On the Team Details Screen, users have the option to display colored data bars behind each
datapoint to visualize how that team compares in that datapoint to others. The percentage of
the orange-colored data bar is the team’s value for that datapoint divided by the highest value
across all the teams at the competition. Data bars for datapoints like incap time and fouls
(datapoints where the higher the number of the datapoint, the worse the team’s pickability is)
go from right to left and are colored red. Users can also navigate to the team’s matches

through the See Matches header.

Team Notes

Team Notes

Users can write notes on teams by clicking on the orange Notes button on each team’s Team
Details page. We store the notes they take on the Grosbeak web server, and all the other

devices pull from that so that all other users can share notes.

Data Graphs for Specific Datapoints

©LTEAE

Tele Total Speaker

1678

QM33:8.0

Match Number

Data Graph for Tele Total Speaker Notes

Tapping on a datapoint in a Team Details page opens up its TIM (Team-in-Match) Data
Graph—a bar graph of the match number vs. the datapoint’s value. For example, by tapping on
the datapoint “Tele Average Total Speaker,” a graph will appear. Each of this graph’s bars
shows the number of Notes scored into the speaker during Teleop by the team in the
corresponding match. Tapping on a bar displays the specific qualification match and datapoint
value in the format of QM{match number}: {datapoint value}, e.g., QM33: 8.0. The axes are
labeled differently for unconventionally graphed datapoints such as the stage level or a boolean

value. The photo below displays an example of this.

7565 5 & & - O LTELD

Stage Level Right
1678

Onstage

Failed

No Attempt

Match Number

Stage Level Right Graph

Team Rankings

8015 8 & & - OLTEAD

Current # Current # Pred. Pred. Rank
Avg RPs RPs RPs ’

1 4613 3.40 34 340 1

2 1678 3.40 34 340 2
3 353 320 32 320 3
4 7407 320 32 320 4
5 2357 320 32 320 5
6 8044 3.10 31 31.0 6
7 3656 3.10 31 31.0 7
8 5166 3.00 30 30.0 8
9 1729 280 28 28.0 9
10 360 280 28 28.0 10

11 4499 2./0 27 270 11

Team Rankings Page

Users can access the Team Rankings Page through the navigation sidebar. By pressing
whichever one they want to display, they can switch between displaying current and predicted

rankings.

Rankings for Specific Datapoints

FIELD

Tele Average Total Notes

1 3276 14.30
T
3 7407 10.40
4 1261 10.30
5 4272 10
6 4613 9.50
7 597 9.10
7 857 9.10
7 2231 9.10
10 360 8.70
10 2075 8.70
10 3655 8.70
10 5996 8.70
14 6090 8.50

Rankings for Tele Average Total Notes

By long pressing on a datapoint on a Team Details page, a user can view a ranked list of all the
teams by that datapoint. Viewer displays these ranks on the left side of Team Details cells, but
Viewer doesn’t refresh them as often to avoid lag. By viewing a ranked list, users can see which
teams are above and below a particular team. By clicking on the cells in the ranked list, users
can open a team’s Team Details page. We highlight the team that the user was previously

viewing for easy visibility of their performance.

Stand Strategist Notes

FIELD

Auto Strategies

-> +source side
Strengths

Weaknesses
> +tall

Can Intake Ground?
-> true

Notes
-> + better at cleanup than at being far from their side

Stand Strategist Notes

Our Stand Strategists collect subjective data about teams that Subjective Scouts do not. We
upload that data to our server, which Viewer displays in the Stand Strategist Notes page. Users
can navigate to this page by clicking the Stand Strategist Notes field on a team’s Team Details

page.

Last Four Matches

8135 5 @ ¢ - OLTEAD

1678 PICTURE

Citrus Circuits

AUTO PATHS

See Matches -

Notes (click below to edit)
Team Notes

L4M Auto Data

L4M Mode Start 3
Position

22 L4M Auto 75.0%
Preload Success
Rate

5 L4M Auto 3.3
Average Total
Notes

1 L4M Auto Max S
Total Notes

60 L4M Auto 1.3

Average Total
Failed Nntec

Last Four Matches

On a Team Details page, users can toggle between all-matches datapoints to the same
datapoints but only calculated from a team’s last four matches. Strategists use this feature to
analyze teams that have improved as the competition progresses and to judge them based on

their most recent performance.

Robot Images

FIELD

Robot Pictures for 1678

Full

Robot Images

On a Team Details page, users can view images of the team’s robot by pressing the Pictures
button. Each team has multiple pictures showing the robot from different angles. The Pit Scout
uses the Pit Collection app to take these photos, and we manually transfer them to the other

phones by plugging in the phones to the Server.

Auto Paths

8115 O @& O®LTEAD

Auto Paths for 1678 o

Match number(s): 59, 68, 82,90, 110, 119,
Ran 6 time(s)
Leave: Yes
of Successes / # of Attempts

— 1 . !
3/6

N I

18/30 < 2/6
o/

o Path: #1/7
[o

Color Key:
66.67%>Rate>=33.33%
Had the note but did not use it
on -> Last Action

Auto Paths

s () —

Auto Paths was a new feature added for Championship 2023 once strategists realized how vital
having a compatible auto was. We’ve continued to use and update this feature throughout this
year. This feature visualizes the Auto Paths of teams, starting with their most common autos
and scrolling through other Auto Paths they have. They can navigate the Auto Paths by swiping
to the sides or pressing the arrow buttons. The map shows Auto intake or scoring successes
over attempts and the order in which these actions occurred. For example, if it displays x/y
over the Speaker, the team attempted to score a Note into the Speaker y times and succeeded
x times. If it shows s/a over an intake position, the team tried to intake and score the Note there

a times, and succeeded in intaking and scoring it s times (we consider failed intakes and failed

scores the same for Auto Paths). If a team collected a Note and did not attempt to score it, that

position would be colored orange. There are also displays for ferries and intaking Notes that

were not in regular positions.

8:185 O @ © ®LIELD 8275 O @ O @®LIELR

Action Timeline:
Path Number: 1
Had Preload
Score: Speaker, 6/6
Intake: Spike 1
Score: Speaker, 5/6
Intake: Spike 2
Score: Speaker, 4/6
Intake: Center 1
Score: Speaker, 3/6
Intake: Center 2
Score: Ferry, 2/6
Intake: Center 5
Score: Ferry, 1/6
Intake: Other
Score: Speaker, 0/6
Intake: Center 4

Auto Strategies Notes:

-> This is where strategist
notes would be displayed

Tap outside to close

Tap outside to close

Action Timeline Strategist Notes

This year, we added several features to convey additional information, including action
timelines, notes taken by strategists on autos, and match numbers that the auto was used in,
which, when pressed, open the corresponding Match Details page. The app also how shows

color-coded paths on a map to help visualize actions.

Field Map

. None Blue Red None Blue Red None -

D { D { J;Lah AN

\‘ ngm“[\‘ "’mgm“[LM /

Field Map

In Viewer, users can view the Field Map by pressing the FIELD button at the top-right. This view
shows the possible starting positions, driver stations, and positions of the starting Notes. Users

can switch between the red and blue alliance to reverse the map orientation.

Pickability

FIELD

Pickability

Rank Team # Pickability Tst v

1 1678 1st 91.3
2 8044 1st 86.9
3 4946 1st 86.0
4 2075 1st 82.6
5 16 1st 82.1
6 4206 1st 79.5
7 2718 1st 78.7
8 9496 1st 78.1
9 360 1st 74.5
10 341 1st 74.0
11 4499 1st 73.9
12 3276 1st 73.6
13 1261 1st 73.2
14 8011 1st 71.8
15 3767 1st 71.7
16 9418 1st 70.4
17 2231 1st 69.1
18 1714 1st 68.9
19 9023 1st 68.8
20 4738 1st 68.4
21 2357 1st 68.0
22 1168 1st 67.3

Pickability

Users can rank teams based on pickability metrics such as 1st, 2nd, Defensive 2nd, or Scoring
2nd. In previous years, only the 1st and 2nd pickability values existed. This year, we added
additional pickability metrics to better judge different aspects of teams. We calculate these
values using preset weightings based on what is deemed most important for a chosen robot
(see Pickability). Users can switch between the various pickability values using the dropdown

in the top right. Clicking on a team number will open the team’s Team Details page.

Picklist

Last year, Viewer had live and offline picklist editors that allowed users to edit their personal
picklists and see the most updated ones. It has two versions, online and offline. The online
version fetches the most recent version from Grosbeak and is not editable, while the offline
version is editable and is stored locally on the device. We did not use this feature this year as

our new app, OverRate, allowed strategists to rank teams on demand.
Elim Alliances

Last year, Viewer had an Elim Alliances feature to give further insight into playoff matches and
alliances. It displayed each alliance and predicted scores for Auto, Teleop, Charge, and Total
based on the averages of all the teams in the alliance. We did not use this feature this year as

we didn’t find it helpful, but we may reuse it in future years.
Data Refreshing

Viewer’s data refreshes automatically by fetching data and updating caches at a set time

interval. When the data refreshes, Viewer runs callbacks in all active pages to update the UI.

During Championship 2024, we had to temporarily increase the request timeout time and the
refresh interval because the cell service was too slow in the large venue. Due to the slow
service, the requests to fetch data from Grosbeak would time out. This prevented Viewer from
getting new data. In addition, if the app was closed and then reopened later, users would not
be able to access any part of the app due to not having any data at all. In future years, we may
try to store some data locally in case similar issues occur so that users would at least be able

to view data from the last time the app got data.
Groups

Groups is a new feature for this season, allowing users to put teams into color-coded groups

and have them highlighted in the match schedule. Users can organize teams into groups for

any purpose, including marking teams to be compared for picklist positions or marking teams

as potentially affecting matches important for rankings.

FIELD

Groups
Group 1
1678 [}
4613 []
4206 [}
+ Addteam

No teams in this group yet.

Enter team number
Y

Group 3

No teams in this group yet.

Groups page

2231 5996 3880 71 oy
62

v 46130 T 129

A match with teams from a group

Server

During a competition, the Server works in tandem with the Scouts to provide accurate data to
the strategists and the Picklist. As matches progress, the Scouts collect data that is then sent
to our server laptop. In addition, the Server collects certain data from The Blue Alliance
because it is a more reliable and consistent source of information on certain game actions. The
Server runs many calculations on the data and then stores the raw and calculated data on a
local MongoDB database on the designated laptop. When the server is done, the data is
uploaded to a MongoDB database in the cloud, which is then accessed by our Grosbeak web
server. Finally, the Viewer app requests the data from Grosbeak. For more information on

databases, see Section 4.1.6.1 Local and Cloud Databases in the 2020 Whitepaper.

Schema

In our scouting system, Schema is the blueprint for our data structure. We use YAML files to
store the standardized data structure all our apps use. These YAML files allow our developers
to modify data fields in a single location, thus increasing code reusability between different
FRC games and modifications we want during the season. Our ultimate goal is to remove all
hard-coded data fields and replace them with schema data fields. A structured data system
allows quick and easy changes throughout the code, allowing us to invest time in other tasks.
Schema associates the most calculated data fields with a basic type of calculation, such as
averages or counts, allowing developers to quickly create new calculations without writing new
code. Developers can also easily change the weighting for calculations that combine other
metrics without altering Server code, making it easier for picklist strategists to change the value
of weights during competition. Data field bugs (like typos) can be quickly fixed during

competitions without wasting time.

Calculations

Calculations are performed on raw data collected through our apps. Processing of this data is

split into multiple calculation files determined by the category of the data being analyzed. Each

https://www.citruscircuits.org/uploads/6/9/3/4/6934550/whitepaper_2020.pdf

calculation file has its own schema file and collection in the database. All calculations are
subclasses of the parent class BaseCalculations, which includes the calculation methods
that most calculation files use. Each calculation file also has a run function that checks the
database for new changes, calls other functions within the file to create new data, and then
writes these changes into the database. Calculations include an LFM (last four matches)
datapoint for objective data, which shows a team’s performance in the last four matches. The
server.py imports these calculations in the order listed in calculations.yml and simply
calls the run() function to execute the calculation. For more information on specific

calculations, see Section 4.1.7.2 Consolidation and Objective TIM Calcs in the 2020

Whitepaper.

Team and TIM Data

Data collected by Objective Scouts is used to record objective Team-in-Match (TIM) datapoints
of how a team played in a match, including how many Notes they scored or failed to score in
each location, if they parked, trapped, or went onstage, their cycle times, incap time and more.
Objective TIM datapoints are then used to calculate objective team datapoints, including the
averages, standard deviations, percentages of success, medians, modes, and maximums of all
the objective TIM data, as well as the objective TIM data of the robot’s last four matches. It can
also calculate their expected cycle times, how many matches they played, harmonized, were

incap, and more.

The quickness score and field awareness score datapoints that Subjective Scouts collect about
a team during a match are recorded as subjective TIM datapoints. The subjective team
datapoints, including field awareness, quickness, ability, defensive ability, and proxy ability, are

calculated using the averages of the subjective TIM datapoints.

Auto Paths

The Auto Paths calculation collects every action a team performs during the autonomous
period, including scoring and intake actions. By looking at the order in which the actions were

done, we can get a sense of the general path a robot takes during auto. Our strategists mainly

https://www.citruscircuits.org/uploads/6/9/3/4/6934550/whitepaper_2020.pdf
https://www.citruscircuits.org/uploads/6/9/3/4/6934550/whitepaper_2020.pdf

use the data to check if our autos are compatible with the autos of other teams. Data from our
Auto Paths calculation can be used in Pickability calculations and is an important part of

assessing a team’s overall ability.

When calculating Auto Paths, the timeline data collected by each different Scout is
consolidated, filtering out all non-auto actions and creating a single list of auto actions sorted in
chronological order. However, rather than listing every auto path by match, similar auto paths
are matched together to calculate the success rates of every unique path per team. Auto paths
are matched together based on start position and intake/score attempts since these actions
will be unique for every different auto path. By matching auto paths based on attempts rather

than successes, each auto path can have success rates for scoring.

This year, we made minimal changes to Auto Paths; instead, we made many changes in their
display. For example, we added additional pop-ups that displayed data such as a timeline of

actions. For more details, see Auto Paths in Viewer.

Pickability

Pickability is a metric that allows teams to be pre-sorted before strategists discuss and refine
the picklist order. Each team has a first and second pickability, which approximates their
suitability as a first pick and a second pick, respectively. Pickability is calculated using a

weighted sum of teams’ values for certain datapoints.

After an event, all the teams are sorted into their perceived ranks, such as high, medium, low,
etc. Next, a few different multivariate linear regressions are run to see what model best predicts
each team according to the assigned ranks. We then use the given coefficients as our weights
for each component datapoint. After this, we calculate the pickability values for each team and
rank them from best to worst for every model estimated. Finally, we have a blind comparison to
see what model leads to the rankings that make the most sense and choose to use that
pickability model for the following competition. This would be run for both first and second

pickability metrics.

This year, we added the ability for Stand Strategist datapoints to be included in the pickability

calculations. Since Stand Strategists collect important data related to defense, we included

their datapoints in our Second Pickability calculations. Also, since there were many possible
strategies for the second pick to play in this year’s game, we made multiple second pickability
metrics for each strategy: ferrying, defense, and scoring (offense). Additionally, the pickability
metrics are calculated based on data from the last four matches to show the recent
performance of the robots rather than their overall performance. These metrics are helpful

when robots have a poor first few matches.

Expected Fields

A new “Expected Fields” calculation was added to our Objective TIM data this year. This
calculation produces a collection of datapoints to determine the number of cycles a robot can
do. We developed this calculation this year since our 2024 Match Collection app allows scouts

9w

to record specific intake locations, such as “far,” “amp,” or “center” (for more details, see the
Teleop section in Match Collection). To do this, the calculation uses each robot's intake and
score or ferry location in every match. Additionally, to find an expected cycle time, the
calculation uses the time from the start of Teleop to the time at which a robot goes to climb. In
a game where each robot can play many different roles, these datapoints helped our
Strategists compare robots’ offensive capabilities and served as a useful datapoint in

predicting match scores.

By weighting each intake and score location differently, we can accurately predict how many
full field cycles a robot can do and the number of Notes it’s expected to score. Speaker and

amp scores were weighted differently because amp scores took slightly longer than speaker
scores. Ferried Notes were weighted lower than scores since they are faster as well.

Additionally, a robot’s incap time is subtracted from its total Teleop time.

Predictions

During competitions, Server makes predictions on future match scores, ranking points, and
probabilities of winning, in addition to final rankings for each team. Predicted Alliance In Match

(AIM) data is calculated using Objective Team and The Blue Alliance (TBA) data. This data

collection includes an alliance’s chance of getting each RP, final score, and probability of

winning.

This year, score predictions were more challenging due to the non-linear nature of amplification
scoring. A simple sum of team averages for speaker scores, amp scores, etc., did not work this
year since the number of amplified speakers (the main contributor to team score) heavily
depends on a team’s alliance partners. We initially struggled with developing a one-size-fits-all
score prediction formula and experimented with several competing formulas at our first
competition. We found that during week 2-4 events, approximating a speaker score as 3.4
points regardless of amplification worked well. However, this formula was not scalable to
lower- and higher-scoring competitions. We eventually settled on a formula derived from a

team’s expected Notes scored (see the Expected Fields section) and the assumption that all

speakers are amplified. Using this model, we solve a system of equations for amp and speaker
scores. The equations model an alliance that maximizes their score by balancing amplified
speakers with amp scores. Appropriate constraints are included: among others, the alliance’s
total Notes scored must equal the sum of their expected Notes. We then solve for the number
of speakers and amps that satisfy the system. This formula worked well for us throughout

Sacramento Regional and East Bay Regional (~7 points off on average per match).

Melody RP predictions were relatively simple; an alliance was predicted to achieve the Melody
RP if the sum of their expected Notes was greater than or equal to 90% of the Notes threshold.
This worked quite well for us throughout the season, predicting the correct outcome in ~80%

of matches. We used the lowered Coopertition threshold as Coopertition was achieved in most

matches.

Ensemble RP predictions were more complex. We used the two easiest-to-achieve Ensemble
RP stage scenarios as a threshold: one trap + two climbs and harmony + third climb. From our
Objective Scouts, we had individual climb, trap, and harmony success rates for each robot.
Assuming the climbs and traps were independent events, we multiply the individual
probabilities to get an alliance probability of achieving the RP. This is done for every possible
permutation of each scenario, and a maximum probability is taken as the probability of
achieving the RP. This method was quite accurate, predicting the correct outcome in ~80% of

matches. It’s important to note that our Melody RP prediction was not a probability, while the

Ensemble RP prediction is a probability. (This caused some misunderstanding in thresholds

and displaying RPs in Viewer.)

This year, we used a new win-chance formula. In the 2023 Whitepaper, we used a logistic

regression based on alliance score differences. This method calibrated itself too slowly and
depended heavily on past data and estimations, affecting the prediction accuracy. Instead, this
year, we took advantage of our standard deviation datapoints —for each score datapoint we
collect, we also have a corresponding standard deviation datapoint. Assuming team scores
behave according to a normal distribution (this is not ideal and is one reason to change our
predictions; see last paragraph), we can then calculate a mean and standard deviation for a
whole alliance’s score distribution using the fact that the sum of two independent normal
random variables is still a normal random variable. We then run a one-tailed t-test for both
alliance’s distributions in a match to determine the probability that one alliance wins. This
method was remarkably more accurate than the logistic regression, predicting the correct
match outcome 90% of the time. However, while the logistic regression is time-dependent, this

new method requires more matches played to be accurate.

Special calculations are made for the playoffs—the predicted auto and tele scores for each
alliance are calculated separately. In the case of four-team alliances, calculations are run for

multiple permutations, such as the captain and first pick and one of the second or third picks.

Predicted Team calculations use each team’s predicted RPs in each match to predict the final

rankings at the end of qualifications.

During this upcoming offseason, we’re completely overhauling our prediction formulas. We’re
still trying out new methods of predictions in hopes of achieving complete autonomy. In the
past, we relied on specific formulas for each prediction—in 2023, Charge and Link RPs had
individual formulas, while in 2024, formulas for Melody and Harmony RPs had to be constantly
adjusted from competition to competition. Furthermore, a full update is required yearly,
entailing more hours of brainstorming formulas and writing code. A new system based on linear
and logistic regressions using past competition data was created in response to the constant
changes. In this new system, weights for each action (e.g. speaker scores and onstage rates)

are estimated by running a multiple linear or logistic regression on match scores vs. each

https://www.citruscircuits.org/uploads/6/9/3/4/6934550/2023_whitepaper.pdf

action. Linear regressions are used for score predictions, while logistic regressions are used for
RP and win chance predictions. We ran into problems with this method before the 2024 World
Championships caused by large amounts of robots that only ferried Notes, which we did not
account for in the models. If successful, this new method will allow predictions to essentially
run themselves; at the beginning of a season, we set certain actions as independent variables,
and the action weights will self-update throughout the rest of the season. If this change is

successful, hopefully, you’ll see a more concise predictions section on the 2025 whitepaper!

Scout Precision

Scout Precision is a metric that calculates the number of points a Scout is off from the actual
total. Scout Precision Ranking (SPR) compares Scout data against The Blue Alliance (TBA)
data.

TBA only reports official scores for entire alliances, not individual teams, so Scout Precision
calculations use the combined data of all Scouts on an alliance to find how far off a specific
Scout is from their expected data. Since there are nine Scouts per alliance, with three on each
robot, there are 27 combinations of three Scouts that will contain one Scout from each robot.
For each of these combinations, the values of the datapoints for each Scout are totaled to get
the overall alliance score. The official value for each datapoint is pulled from TBA and then
compared against the total scouted score for the alliance to calculate the amount of error made
by Scouts. A match’s average error for a particular Scout is calculated by taking the average of

all errors in all combinations.

Once the average match errors for each Scout in a match are calculated, the formula looks at
each three-Scout combination that a specific Scout was in. The average errors of the other two
Scouts in that combination are divided by 3 (since errors result from three-Scout combinations)
and totaled to get the expected error of that combination. Then, the actual error of the
combination, including the Scout in question, is subtracted from the expected error to find how
much the Scout contributed to the error of that combination. The average of this value for all of

a Scout’s combinations in a specific match is that Scout’s Scout-In-Match (SIM) Precision.

The average of a Scout’s SIM Precision values for all matches in a competition is that Scout’s
overall Scout Precision Rating (SPR). The lower this value, the better since it represents how
much average error a Scout contributed to their combinations. For a more detailed example of

the Scout Precision Ranking calculation, see the SPR Calculation Walkthrough appendix.

We have considered utilizing SIM Precision in TIM consolidation. This could be done by
subtracting each Scout’s calculated error from the scouted value before consolidating. We
have also considered using overall Scout Precision in Auto Paths calculations by favoring the
most accurate Scout’s timeline. However, we have not implemented these due to the long
runtime of Scout Precision calculations and the possibility of not having TBA data due to the
FIRST API not updating. (This was a rather serious issue during the Sacramento Regional, and

we have now taken steps to run our entire system flawlessly without external data.)

This season, the formulas for Scout Precision largely stayed the same. Instead, we lowered the
runtime of Scout Precision by 66%, allowing it to be run more frequently, as it no longer takes
up most of a full Server loop’s duration. Additionally, we can now exclude Scout Precision from
our default Server loop. This is mainly due to the issues that arose when the FIRST API (and,
therefore, TBA) did not update during the competition. We also added the ability to calculate
SPR for specific datapoints. For example, we calculate individual SPR for speaker and amp
Notes. These individual SPR metrics are used to see individual scouts’ strengths and
weaknesses. This year, we found that our scouts were particularly poor at recording amplified

speaker Notes.

Interactions with TBA and Statbotics

We collect data from Statbotics and TBA through their respective APIls, each providing data in
JSON format, making it easy to process programmatically. TBA’s data is primarily used for
detailed information about specific matches, which is crucial for calculating metrics such as
scout precision, climbing vision, leave, and spotlight. Climbing vision, for example, indicates
whether a team can climb onto a chain opposite their driver station (and thus, can’t easily be

seen). This is derivable because the order of teams TBA lists matches the driver stations' order.

On the other hand, the data we receive from Statbotics predominantly focuses on event-wide,
match-specific, and seasonal statistics. A key metric from Statbotics is EPA (Expected Points
Added), a moving average reflecting team performance. Unlike TBA data, which we actively
process, the information from Statbotics, particularly the EPA values, is used directly without
further calculations. Our strategy team then directly utilizes this pre-calculated data and our

calculated data for match strategy and forming a picklist.

Testing and Code Standards

We write automated testing for most Server code using the pytest and unittest libraries. Each
calculation and script file has a corresponding test file that uses fake data to test that a file is
performing properly. Test files are generally structured so that every function in the original file
has a corresponding test function that will fail if the output is incorrect. Anytime code changes,
the corresponding tests must also be updated to ensure everything functions as intended. This
form of automated testing provides several advantages. Previously, it was difficult to
standardize the environment in which code was run, leading to code that would function on
one developer’s device but fail on another. Tests also serve as documentation for the main
code, acting as an example of how it should run. Running tests with pytest is also convenient

since it allows parts of the Server to run individually.

A GitHub Action automatically tests each pull request when it is opened and displays whether it
succeeds or passes. This ensures that each pull request is functional before it is merged. Every
pull request is also checked against Black, a Python code formatter. This allows the codebase

to have standardized formatting even while different developers contribute with unique styles.

Pulling Data from Devices

Data collected by Scouts is formatted into a QR and scanned using QR scanners. The
scanners then upload the data to the database. QRs can also be pulled from tablets connected
to the server laptop via the gr_input. py file. Tablets can store QR data locally if QR scanning
doesn’t work. Furthermore, the Server laptop pulls images and JSONs collected in Pit

Collection from plugged-in phones. This data is uploaded to the database as well. Processed

data is pushed to the Downloads folder of connected Viewer phones using the
send_viewer_images.py script, allowing the Viewer app to see the images and data

models.

QR data is stored in a compressed string format and later decompressed into a readable
arrangement using the decompressor Schema. Compressing QR strings decreases the amount
of space needed to store data, and Schema formatting for QR strings decreases the amount of

stored data.

If a QR in the system needs to be removed or modified, it is blocklisted or overridden rather
than deleting or altering the raw data. A QR may be blocklisted if a Scout inputted inaccurate
data (ex., missed a portion of the match) or if a match gets replayed. Instead of being
completely deleted from the database, a blocklisted QR is simply ignored in all calculations.
Suppose a specific datapoint for a team in a given match needs to be modified. In that case,
the QR can be overridden by flagging the datapoint’s calculation to use a given value instead of
the one from the QR code. After blocklisting or overriding a QR, calculations must be rerun to

get accurate data.

Stand Strategist and Pit Data

Stand Strategist and Pit Data are crucial to our team’s Picklist and give strategists very
important qualitative insights on robot performance. Thus, it is necessary that we insert the

data into MongoDB, where it can then be sent to the Viewer or Picklist as needed.

Since the Stand Strategist and Pit Collection apps don’t export data as QR codes and are
separate from Match Collection, we pull data from them manually using a USB cable and the
Android Debug Bridge. The Server loop checks if any Pit Phones or Stand Strategist Tablets
are connected, and then pulls data from specified folders on the devices. For robot images, we
have a send_viewer_images.py script that sends JPEGs from the Pit Phones to the Viewer

Phones.

Unlike data collected by Objective and Subjective Scouts, we do not perform calculations on
Stand Strategist or Pit Data. Instead, we handle empty values and convert datapoints into

suitable Python data types before uploading them to MongoDB.

Exporting Data

Even though all collected datapoints are viewable on the Viewer app, it is imperative to be
capable of working with data on a spreadsheet during the competition itself. As a result,
specific data is exported as CSV files to be easily used in a spreadsheet or another data
visualization tool. Using a Python script, Team and Team-In-Match (TIM) data are exported
together with data from TBA in CSV format, allowing strategists to work with the data in a

spreadsheet whenever necessary.

The Picklist Editor receives data from CSV exports. After a competition, the data is exported to
help analyze predicted calculations, data accuracy, scout accuracy, and other data. Although it
is plausible to develop a system to automatically send exported data to spreadsheets or similar
software, we found sending data manually via Slack easier because an actual system would

require unnecessary effort and wouldn’t provide any additional benefits.

Grosbeak

Grosbeak is a Python FastAPI web server providing reliable data transfer between our cloud
database, MongoDB, and front-end apps. It was created during our 2022 competition season
as a backend for our Live Picklist feature but has since replaced our old web server, Cardinal,

which was built during the 2021 offseason.

In the 2022 offseason, we implemented serving data and static files (match schedule and team
list) and converted our WebSocket-based Live Picklist into a simpler REST API. We also
restructured the data being served to consolidate similar documents across collections,
simplifying data fetching in Viewer. For example, a team’s objective and subjective data would
be combined into one document. We attempted to implement server-side caching of

consolidated data to improve performance, but we ran into limitations with MongoDB.

At the beginning of each competition, we upload the competition’s match schedule and team
list to Grosbeak through a simple web interface. Viewer and Pit Collection can use endpoints in

Grosbeak to retrieve the match schedule and team list for a competition.

To retrieve data, the Viewer makes requests to an HTTP endpoint that serves all necessary
data. Grosbeak reads data from MongoDB, processes it to consolidate documents, and returns

it to the Viewer.

This season, we implemented a set of Stand Strategist endpoints in Grosbeak, enabling Stand
Strategist to transfer collected data to and from MongoDB without having to process data
through the Server. However, we did not use this feature as we did not acquire data plans for

the tablets on which Stand Strategist is run.

The Live Picklist feature in Viewer relies on Grosbeak to synchronize the picklist between
devices. However, we did not use the Live Picklist feature this season since it was unnecessary

and problematic.

Picklist Editor

Overview

Picklist Editor is a tool developed to construct an informed picklist at competition using our
scouting data. The app depicts the competition’s team list and statistics for each robot, with its
main feature being the ability to reorder teams. Picklist Editor runs on Google Sheets using the
Google Apps Script platform, and the code is written in TypeScript. All features except team
rank ordering, removing teams, the last four matches checkbox, and some Final Picklist

capabilities are written with Google Sheets formulas.

Team Rank Ordering

In the main editor, the first column shows a list of the teams in the competition, initially ordered

by their ‘pickability’ ratings (pickability ratings are based on either first or second pick rank

scores; for more information on how pickability is calculated, see Pickability in Server). Ranks

are displayed in the second column.

Each row displays the data for its respective team. The data is retrieved using VLOOKUP
formulas from a separate raw data sheet exported from the MongoDB database by our Server

at the end of the competition day.

Some additional datapoints our strategists collect are manually inputted throughout the first
day of matches. These datapoints include how robust a robot is mechanically and electrically

and are collected subjectively through examinations in the pits and matches.

To reorder the teams, the picklist operator edits the ranking number (e.g., to move a team
between first and second, change their rank to 1.5). Then, the scripts behind the Picklist Editor
will automatically reorder the teams and update their ranks to whole numbers. The spreadsheet

is designed for bubble sorting, starting from the top and working downwards.

At the top left corner, a checkbox exists to change the displayed datapoints to show data for
the last four matches played. These datapoints are used to rank teams based on their most

recent performance. Unchecking it will revert the datapoints.

A B c D E F G H “«r oL M N o P Q R s T

T Auto Auto Avg full Avg
3 D Electrical Mechanical Avg Max Compatible Tele Avg Tele Avg Avg field Cycle Tele Max Exp
Rank DNP |Robustness |Robustness 1st Speaker Notes Spike Auto Amp Speaker Intakes Time Amp Field

+ 12345 11 10 40 4.01105.2 66.7 Ferrying 41 80 197 118 90 111
© 23425 13 20 40 510 80.7 48.1 Ferrying . 36 57 162 221 100 94
© 23466 5 20 3.0 3.0 62.7 43.8 Scoring 23 40 42 42 119 376 100 77
45474 9 20 40 40 70.0 38.2 Scoring 20 30 45 54 131 216 80 80
: 90943 3 20 40 4.0 842 50.4 Ferrying 16 30 33 38 144 169 60 76
> 34134 6 20 3.0 40,929 64.4 Ferrying 25 40 27 49 170 120 90 103
o 87878 7 40 3.0 43.9 36.9 Scoring 13 20 39 33 91 22 60 70
" 23465 8 3.0 40 48.4 235 Scoring 16 30 27 43 103 641 70 57
© 19393 4 3.0 3.0 51.6 30.5 Scoring 15 30 TRUE 31 39 106 433 70 62
5 24242 10 40 3.0 4.0[112:7°80%6 Ferrying 20 30 TRUE 36 49 169 140 90 103
« 91919 1 40 3.0 4.0 89.8 76.8 Ferrying 21 40 TRUE 11 29 165 131 50 99
© 34343 12 30 40 3.0 863 62.5 Ferrying 15 30 11 44 163 136 60 097
v 24222 2 20 40 40 824 59.0 Ferrying 26/ 50 TRUE 25 32 128 201 60 74
7 11010 14 10 3.0 3.0 924 703 Ferrying 15 50 TRUE 30 30 146 147 70 93
» 33333 15 2.0 4.0/99.2 847 Ferrying 15 20/ TRUE 31 38 169 131 80 99

Main Editor

Team Performance Comparison Graphs

When a match-by-match comparison between teams is necessary, the Picklist Editor has a
graphing feature that compares the data of up to four teams in a single datapoint. The graphs

can also show changes in data over multiple matches.

1 Data Field: Total Speaker Tele - 1=TRUE, 0 = FALSE

s oL 12345 123456 SIS 24242

v
22 10.0
23
24
25
26 8.0
27

9
7 7 7

2
29 6 6
™ 6.0
P 5 5 5
32
33 4 4 4 s

4.0
34

3 3 3 3 3
35
36
2 2 2 2
3 20
38 |
39
40
4 0.0
2 3 4 5 6 7 8

42

43 Match Played
a4

Team Comparison Graphs

Removing Teams

To limit the teams to rank and save time, Strategists determine teams that aren’t performing at
the level they’d like for our alliance or may not be a good fit for our preferred strategy and
remove them from the picklist at the beginning of the meeting. Before the picklist meeting,
these teams are discussed between the Match Strategist, Stands Strategists, and strategy
mentors and given ratings in a column adjacent to the rankings column. A team is removed
from the list on the main page by typing “DNP” or “d” in their rank cell. If the team is later

reconsidered, the operator can send the team back by checking its box on the DNPs page.

1 Teams Send back (click)

2 12341]
3 23423]
4 23424 |
5 95959)
6 10909 |
7 44444 O

DNP Page

Updating Datapoints

The datapoints shown in the editor and their order can change drastically throughout the
season based on feedback from students and mentors in picklist meetings. Due to the way that
the Picklist Editor is set up, it was easy to add or remove datapoints in the middle of picklist
meetings, although strategists did attempt to determine all datapoints beforehand to save time.
Datapoints can be added by inserting a new column, copying over the formulas, and entering

the datapoint name in the second cell of the column.

Operation

Before 1678’s picklist meetings, the picklist operator is sent raw data in CSV format from the
Server. During picklist meetings, the picklist operator displays the Picklist Editor through a

projector.

Then, starting with the first pick order from the ranking equations, the teams are reviewed
beginning at the top and compared on a pairwise basis, progressing down the list. At the
picklist meeting, attendees decide for each team whether it should be moved up the picklist
and by how many places. Once the potential first picks (usually down to 10 or 12 teams) are
ranked, the rows containing those teams are hidden, and the potential second picks are ranked

similarly.

At a regional, where matches continue on the second day, strategists can make further

changes to an additional sheet called the Final Picklist. This sheet is created after the initial

picklist has been finalized and also contains the functionality to reorder or remove teams in

case certain teams’ ranks need to be changed. Some additional functions in this sheet include

the ability to remove but not DNP teams, add teams not included in the initial picklist to it, and

a column that tracks the difference in rank compared to the initial picklist.

The purpose of the Final Picklist is for strategists to make further changes to the picklist based

on further information and a closer review of specific teams by the Stand Strategist and other

key strategy team members.

G H 1

Final Picklist

3 Mechanical
Rank Delta DNP Robustness Robustness 1st
+ 12345 10 -1.0 1.0 4.0 4.0|105.2 66.7 Ferrying
: 23425 14 10 20 40/ 50 807 48.1 Ferying
¢ 23466 1.0 2.0 3.0 3.0 62.7 43.8 Scoring
7 45474 9. 2.0 4.0 4.0 70.0 38.2 Scoring
¢ 90943 3 2.0 4.0 4.0 84.2 50.4 Ferrying
s 34134 6 2.0 3.0 4.0 92.9 64.4 Ferrying
o 87878 7 4.0 3.0 43.9 36.9 Scoring
n 23465 8 3.0 4.0 48.4 23.5 Scoring
2 19393 5 1.0 3.0 3.0 51.6 30.5 Scoring
© 24242 16 60 40 3.0 4.0* Ferrying
“ 91919 1 4.0 3.0 4.0 89.8 76.8 Ferrying
s 34343 12 3.0 4.0 3.0 86.3 62.5 Ferrying
6 24222 2 2.0 4.0 4.0 82.4 59.0 Ferrying
7 11010 13 -1.0 1.0 3.0 3.0 92.4 70.3 Ferrying
v 33333 15 2.0 4.0199.2| 84.7 Ferrying
Google Apps Script

> M
Auto Auto
Max Compatible Tele Avg Tele Avg Avg
Speaker Notes Spike Auto Amp

N o P Q

38
49
33
43
3.9
49
2.9
44
32
3.0
38

3 s T

Avg full
field Cycle Tele Max

Speaker Intakes Time Amp

16.2
11.9

13.1 8.0
144 169 6.0
170 120 90

91 222 60

1037601 70

106 433 7.0
169 140 9.0
165 131 50
163 136 60
128 201 6.0
146 147 70

169 131 80

The Picklist Editor is built on Google Apps Script, similar to JavaScript. Using the official

command-line interface Clasp, it is possible to clone the scripts into a local development

environment as JavaScript files. We use the TypeScript programming language, a superset of

JavaScript providing static type checking and an improved developer experience, with Clasp to

develop the Picklist Editor.

https://github.com/google/clasp

Robot Photos

Many strategy team members find that viewing pictures of a robot helps prompt other
observations about the robot and its team’s performance. However, due to performance issues
from previous years, we decided this year that showing robot photos in the sidebar of the
Picklist Editor interface was not worth it. Throughout this season, we decided to have a

separate spreadsheet to display photos, which has proven much more effective.

Video System

The Video System is a vital part of data collection and strategization, allowing strategists to
review and rewatch matches, which helps them create match strategies for upcoming matches,
provide feedback to our drive team, and rewatch a team’s performance in a specific match
during the picklist meeting. We implemented this system due to inconsistency in official match

videos’ upload times and camera angles.

Video System Operators take videos of all qualification and elimination matches, doubling as
Objective Scouts. They start by setting up the tripod and camera in an elevated and centered
position overlooking the field. After each match, they rename the video and copy it from the SD
card to a hard drive. They also move select match videos to USB drives to review between
Qualification matches. During elimination matches, videos are put on a USB flash drive and

given to match strategists, enabling them to develop strategies for the next match quickly.

Conclusion

Season Recap

This year, our scouting system was at its best. We added feature after feature throughout the
season, expanding upon the system architecture we have been iterating on for years. Our

scouting system was crucial in selecting competition-winning picks and generating winning

match strategies. By continuing to build a robust and effective scouting system year after year,

we ensure success at every competition we attend.

Lessons Learned

Training

Once again, training was lacking this year. A lack of proper training in both our Front-End and
Back-End teams hindered our start to the build season. New members had trouble

understanding MongoDB and Python’s unittest.mock class.

This season, we learned how critical proper training is to a software development team’s
success. Our new training presentations on Python and Kotlin and the Mini-Scout training
activity for our new Front-End members allowed our new team members to learn the skills
required to work on our apps efficiently. Next year, we plan to conduct training on basic

statistics along with our standard code training.

Documentation

The importance of documentation has only been more apparent this season. The lack of
documentation for subteam processes and procedures was worrying and caused unnecessary
problems early in the build season. If certain people were missing during team meetings, it
would become a huge issue when their knowledge was needed. Other people would be unable
to work or test without the presence of someone else. Proper documentation would have

eliminated these types of situations and improved our workflow.

Data Plans

Unfortunately, at Champs this year, the phone data plans were highly inconsistent and
unreliable after working smoothly at all our previous competitions. Heavy traffic at Champs and
miscommunication regarding data usage resulted in significant issues, making our Viewer app
unusable. In the future, we plan on getting a faster and larger data plan and creating backup

plans for what to do if the data plans stop working again.

Starting a Scouting System

We recommend teams start with a small system structure: you can use a web app or paper
and pencils—whichever is easiest for you. Citrus Circuits has successfully used a Google
Forms scouting system at off-season events to train new members in scouting principles and
methods. Then, prioritize training your Scouts. We highly recommend finding at least one hour
a week where your Scouts can watch match videos and then discuss with one another: What
would you have done differently? What team did well? What were some minor mistakes? Who

had the best speed?

If you can spare only about two members of your team for scouting, then we recommend either
having each one take notes about the ability of one alliance (training is critical when you are
recording qualitative notes) or you can reach out to fellow teams and gauge interest in forming
a scouting alliance. Each team can get a copy of the data to review for their matches and
picklist meeting, and none of them have to give up many members. However, if you are part of
a scouting alliance, try to create a uniform training method (e.g., schedule a two-hour Zoom

training where they practice taking notes or using your scouting app).

If you have any questions about starting your own scouting system, want our team’s advice
given your resource level, or have any other questions, please contact us at

softwarescouting@citruscircuits.org.

Future Steps

We plan to use the lessons learned from this season to improve for the next. This season was
by far our most successful in terms of the app, data transfer, and code. However, it is essential
to recognize our shortcomings and address them adequately during the off-season months. In
addition, we plan on improving our new member training by creating more hands-on

assignments and training on statistics, MongoDB, and Tableau.

There are many new features to be implemented, code to be cleaned, and processes to be

streamlined. There is no “perfect system,” and we will continue to work hard to improve it.

mailto:softwarescouting@citruscircuits.org

Resources

Old Whitepapers

Our old whitepapers can be found on our team website.

Fall Workshops

Every year, we hold workshops to help students from other FRC teams learn the skills
necessary to grow competitively as a team. Our previous Fall Workshops can be found on our

team website.

2024 Public GitHub Repositories

Match Collection: https://github.com/frc1678/match-collection-2024-public

Viewer: https://qithub.com/frc1678/viewer-2024-public

Server: https://qgithub.com/frc1678/server-2024-public

Schema: https://github.com/frc1678/schema-2024-public

Pit Collection: https://aithub.com/frc1678/pit-collection-2024- li

Stand Strategist: https://github.com/frc1678/stand-strategist-2024-public

OverRate: https://github.com/frc1678/overrate-2024-public

Picklist Editor: https://github.com/frc1678/picklist-editor-2024-public

https://www.citruscircuits.org/scouting.html
https://www.citruscircuits.org/fallworkshops.html
https://github.com/frc1678/match-collection-2024-public
https://github.com/frc1678/viewer-2024-public
https://github.com/frc1678/server-2024-public
https://github.com/frc1678/schema-2024-public
https://github.com/frc1678/pit-collection-2024-public
https://github.com/frc1678/stand-strategist-2024-public
https://github.com/frc1678/overrate-2024-public
https://github.com/frc1678/picklist-editor-2024-public

Appendices

Subteam Structure

Students in Software Scouting are split into either Back-End or Front-End. Each end has its
student lead, who is chosen by the previous year’s team captains and head mentors. Back-End
students code in Python and are responsible for the Server, which manages the database and
handles calculations. Front-End students mainly use Kotlin to create all the apps that users
interact with, including Match Collection, Pit Collection, Stand Strategist, Viewer, and Picklist.
Each end requires members to specialize in specific programming knowledge and concepts.
However, Software Scouting is still considered a single subteam, and students on both ends
regularly review each other’s code and participate in full subteam discussions and system
tests. Some students also occasionally write code for the opposite end. Veteran members
guide newer members, work with newer members on tasks, and teach new members
concepts. The Software Scouting subteam works closely with the Strategy subteam as we
formulate our strategies using scouting data, and most Scouting members are on the Strategy

subteam.
How to Run a 1678 System Field Test

Before the test, collect match videos that are ideally high-scoring matches from a previous
regional/district competition. If the competition season hasn’t started yet, use Week 0 videos or

screen recordings of the xRC Simulator.

Make a new Server branch to merge in any hotfixes that may need to be made during the field
test. Name it with the date of the field test. Pull any unmerged PRs that need to be tested onto

this branch.

Decide on a TBA event key to use (e.g., 2024cada for the 2024 Sacramento Regional). This will
ideally match the event used for the videos, but it doesn’t have to—it can be an event from a
previous year as long as it has a match schedule and team list. Use the event key to create a

test database, team list, and match schedule file.

Set up the system as it would be at competition and send the newest .apk files to the tablets

and phones.

Recruit volunteers to use the Scout and Super Scout apps to collect data from match videos. If
fewer than 20 students are available, have people use multiple tablets simultaneously. The
main concern is not getting accurate data but thoroughly using every feature of the collection
apps. The match videos are only there as a guide, so it’s okay if the team number assigned to a
Scout differs from the robot they are scouting. Additionally, have a user enter test data using

the Pit Collection app.

After each match, scan the data into the Server. Make sure data is being entered into the local
and cloud databases and that the web server is able to send it to the Viewer. Monitor the

Viewer to ensure data is updating and being displayed correctly.

Write down every bug or suggestion for improvement as it comes up, no matter how small.

Afterward, go through the list and prioritize which ones to address first.

Training

During the offseason, the first months are spent training the new members. New members start
by working with all software subteams (Robot, Front-End, and Back-End) to learn the basics
about what each subteam does and to get to know each other before selecting which one
they’d like to be a part of. After new members are separated into their subteams, End-specific
training begins. Front-End training starts with basic slideshows covering coding basics in
Kotlin, including variables, functions, for loops, classes, etc. Each lesson has assignments that
are hands-on challenges the members must complete by utilizing the skills that they learn
throughout the training. Once basic syntax training has finished, Front-End new members begin
on their last training project: the Mini Scout. This was a training method developed in 2021
where new members create their miniature version of our Match Collection app following
instructions that get less specific as they progress through the project. The Mini Scout has
members create a match starting screen, data input screen, and match data edit screen.
Back-End training begins with the basics of Python, with lessons being organized through

slideshows and assignments. Once syntax training is complete, Back-End new members then

learn about our Schema and the MongoDB database. Additionally, Back-End members are
walked through the Server and how data gets transferred and organized. General standards
and tips are taught together to the entire subteam. These lessons include training on GitHub,

creating pull requests to push their code, reviewing standards, and general system overviews.

Scout Training and Management

The week before each competition, Scouts are trained to collect accurate data using the app.
Objective Scouts are trained by a Scout Lead and Assistant Lead, who are in charge of
organizing Scouts during competitions. The training begins with an explanation of behavior
standards at the competition and an overview of the itinerary. Afterward, Objective Scouts
participate in a Kahoot, quizzing Scouts on what to do in certain situations while scouting to
ensure that we get consistent data. Scouts also spend at least 2 hours practicing scouting
while watching matches from this season. Subjective Scouts are trained by our Strategy
mentors and practice by watching matches while discussing their rankings with a mentor. After
repeating this process, when scouts become more confident with their rankings, they collect
data independently with no input from the mentors and get feedback after inputting rankings.
Video System, Pit Collection, and Stand Strategist users are trained by members of Software
Scouting who have experience with the collection process. This training is informal, and the

knowledge is passed down between users.

21 Objective and 3 Subjective Scouts are brought to each competition. Breaks are set by the
Scout Lead ahead of time, and we try to give each Objective Scout 30-minute breaks at least
once a day. Scouts can go to the pits during this time, meet new teams, and explore the venue.
Subjective Scouts organize their breaks. Each Scout has a Scout ID that is used to ensure that
three people are scouting each team. This Scout ID is preassigned to Scouts but changes
when breaks switch off. A Scout count-off where each Scout says their ID is often implemented

to ensure we have all 18 active scouts.

SPR Calculation Walkthrough

Consider a Scout named X. To calculate X’s SPR, the formula starts with a single match that X
scouted. It finds two other Scouts in that match, one scouting each of the other teams in the
alliance. Now, it adds the scout-reported scores from the three Scouts together to calculate a
theoretical alliance score and compares it against The Blue Alliance’s official alliance score to
get that combination’s error. For example, in a combination where X said Robot 1 scored 12
points, Y said Robot 2 scored 31 points, and Z said Robot 3 scored 10 points, and TBA reports

that the entire alliance scored 50 points, that combination’s error is 3 points.

Then, the formula takes the error of another combination with X and two different Scouts on the
other two teams. This process repeats until it has gone through all the possible combinations
containing X and the other two teams that X didn’t scout. The average error of all these
combinations is X’s average combination error in that match. The process is repeated for all

Scouts in that match to find their average combination errors.

Then, the formula returns to look at each combination that X was in. For each combination, it
finds the average combination errors of the other two Scouts and divides each by 3. It sums
the two errors to get the expected error of that combination. For example, in a combination
with X, Y, and Z, where Y has an average error of 15 and Z has an average error of 4, it would

find the expected error of that combination to be 6.33.

Then, it subtracts the error from the specific combination from the expected error. If X had been
completely accurate, the error from that single combination should be similar to the expected
error, so the result should be close to 0. If X had been off, they would have contributed further
error to the combination error, so the result would be less than or greater than 0 depending on
how far above or under they were. If the error of the XYZ combination was 6.33, then the
formula would determine that X did not contribute any extra error on top of the 6.33 that was
already contributed by Y and Z. If the error of the XYZ combination was 7, then the formula

would determine that X contributed approximately 0.66 extra points in error.

This process is repeated for every Scout in that match, for all matches in a tournament. Each
Scout’s average score across all their matches is averaged to calculate their overall Scout

precision.

Picklist Editor Scripts

These are the main Google Sheets formulas that exist in the Picklist Editor. The formulas shown

are examples and may reappear many times throughout the spreadsheet.

Formula to get which second pickability strategy a team is playing. This is responsible for
selecting either ferrying, scoring, or defense from the columns AM, AL, and AK, depending on
whether it equals the value in H23. In this example, columns AM, AL, and AK contain distinct
second pickability ratings that we calculated, and the value in H23 is the maximum value of
AM, AL, and AK.

=SWITCH(, AM23, "Ferrying" , AL23, "Scoring" , AK23, "Defense" , "Defense")

Formula to look up the column index of a datapoint name, given in the cell M2 in this example.

=MATCH(, 'Team Raw Data'!A1:$$1 ,0)

Formula to look up data from raw data given cell A21, which corresponds to a team number,

and N1, which corresponds to the column index found by the Match formula above.

=VLOOKUP (, 'Team Raw Data'!A1:$727$99, N$1, FALSE)

Formula to find change in rank in the Final Picklist, B5 corresponds to the rank displayed in the
Final Picklist and is what strategists change during the second day of competition, and the
Index function finds the initial rank from cell A5 of the Main Editor. If the team has been put on

our do not pick list, their rank will show as “d.”

=IFNA(- +INDEX('Main Editor'!B:B,MATCH(AS, 'Main Editor'!A:A,0),0), "d")

Codebook

Our codebook contains every datapoint we collect, grouped into the respective “collections”
they belong to (e.g. “Objective Team” or “Pickability”). This year, we decided to move our
codebook into a Google Sheet in order to avoid cluttering the Whitepaper document. The
spreadsheet contains each datapoint name, its Python data type, and a short description of the
datapoint. In total, we collected 557 datapoints this year.

Link to Codebook:
https://docs.google.com/spreadsheets/d/1BEb8P5¢c 2-tTHnJa8F47vu4t2fAVcXeSRaD17wcFETf

Q/edit?usp=sharing

Season Timeline

Before Kickoff — All Veteran Software Scouting members train new members and prepare for
off-season competitions by making code improvements and working on off-season projects.

We inventory all materials before each season and order any needed supplies.

1/6/2024 — All Citrus Circuits students watch the Kickoff broadcast and participate in a

full-team discussion about what 1678 will attempt to do in the new season.

1/7/2024 — The Scouting subteam meets with Strategy members to determine what
datapoints are necessary to collect and which we want to display. For each datapoint on the

final list, the following information is noted down:
e The data type
e A description of what the datapoint represents
e Some example values
e Which database collection would it be stored in
e Whether it would be collected raw or if it needed to be calculated from other datapoints

o If it was a raw datapoint, how would it be collected (by Scouts, Super Scouts,

Pit Scouts, Stands Strategists, or The Blue Alliance API)

https://docs.google.com/spreadsheets/d/1BFb8P5c_2-tTHnJa8F47yu4t2fAVcXeSRaD17wcFTfQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1BFb8P5c_2-tTHnJa8F47yu4t2fAVcXeSRaD17wcFTfQ/edit?usp=sharing

e If it would be displayed in the Viewer, and if so, how it would be visualized

1/7/2024 to 1/13/2024 — Back-End students update the Schema files to contain the new
datapoints for the new season. Front-End students update the Match Collection and Pit

Collection apps with new data and Ul designs.

1/13/2024 to 1/30/2024 — Back-End students update the calculation files to match the new
Schema. Front-End students finish the first version of the collection apps and begin to update
the Viewer and Stand Strategist to add new features and datapoints. The visual apps are also
often worked on simultaneously with the collection apps to prevent conflicts between code

merges.

1/30/2024 to 2/27/2024 — Software Scouting begins conducting end-to-end field tests to
ensure the system runs together. Front-End collects user feedback on the apps' Ul. Based on
strategy discussions, the list of datapoints to calculate/collect is updated. Students watch xRC
Simulator matches to test the scouting system before real match videos are available. Scouts
and Super Scouts are trained on how to use the Match Collection app as competition season

gets closer.

2/27/2024 to 4/23/2024 — During competition season, the Saturday before each competition is
a feature freeze, a deadline that stops development on all new features until after the
competition. The subteam runs a full-system test before every competition to catch and fix
last-minute bugs. On the first meeting after returning from each competition, the full subteam
participates in a debrief and communicates with users and mentors to prioritize which changes

to make before the next competition.

4/23/2024 to 5/22/2024 — Members work on the Whitepaper and code cleanup to prepare for

public release.
Competition Roles

The roles in competition are divided into Developers, Scouts, Operators, and Strategists. These
are all student roles, with the exception of mentors assisting Stand Strategists, but even then,

the students are the primary voices.

Developers — The developers consist of one Front-End developer and one Back-End
developer. The developers fix bugs as they arise and assist with Scout ID assignments and
handing out tablets. The Back-End developer is also in charge of uploading scanned data to
the MongoDB cloud database after each match. Two Objective Scouts, who are primarily

Scouts but can assist when needed, also serve as backup developers.

Lead Scout — The Lead Scout manages all of the logistics for the Scouts, including meals,
shifts, handing out tablets, and anything else they might need. The Lead Scout does not scout,
so they may focus on managing shifts and communicating with developers and mentors if any
issues arise. There is also an assistant Lead Scout who helps cover for the Lead Scout when

needed and is an objective scout.

Scouts — Since 18 Objective Scouts are needed per match, about 21 Scouts travel to each
competition to give three Scouts a break at a time. In addition, there are three Subjective
Scouts so that one can be on break while the other two scout. Since Super Scouts are required
to have extensive experience on the Strategy subteam, the student on break often chooses to

help other strategists.

Picklist Operator — A student who’s usually on Software Scouting and has experience in
programming Picklist operates the spreadsheet during picklist meetings. The Picklist Operator

is responsible for updating and maintaining the picklist spreadsheet throughout the season.

Video System Operators — Two Scouting or Business and Media subteam members record,
name, save, and send match videos to strategists. Video System Operators also serve as

Objective Scouts.

Stand Strategists — Two Stand Strategists write specific notes on each team while watching
matches and collect needed subjective data. Stand Strategists edit the picklist at regionals
depending on each team’s performance. On the second day of the competition, they also
participate in Picklist meetings. Additionally, our Match Strategist uses the Pit Collection app to
collect pit data on teams on the practice day and works with the drive team and Strategists
throughout the competition. Our Strategists are often veteran members of the Strategy

subteam and have a keen eye for strategy.

Super/Subjective Scouts — Three Subjective Scouts collect qualitative data during matches,
such as robot speed, driver awareness, and maneuverability. They use a separate app and are

trained separately from Objective Scouts.

Pit Scout — Our Match Strategist usually serves as a Pit Scout. On practice day, the Pit Scout
collects robot data such as robot weight, drivetrain, and vision. They also take pictures of

robots in the pits. All data is collected in our Pit Collection app.

Hardware

This Scouting System requires multiple different pieces of hardware to ensure it runs smoothly
and efficiently. For our apps, we use over 30 tablets for Match Collection and four Android
phones for Pit Collection and the Viewer app. For data transfer, we use two QR scanners that
transfer data from the tablets directly to a single laptop that runs the Server. All hardware is
packed into five cases: Two tablet cases, a Server case, a Video System case, and a Gray case
for extra space. More specific details about the cases and our hardware can be found in

section 4.2 of our 2020 Whitepaper.

https://www.citruscircuits.org/uploads/6/9/3/4/6934550/whitepaper_2020.pdf

	2024 Scouting Whitepaper
	Table of Contents
	Introduction
	History
	Summary of Major Changes Since 2023
	System Overview

	Match Collection
	Starting Screen
	Objective Collection
	
	Randomizing Scout IDs
	Starting Position Screen
	Objective Collection Screen
	Auto
	Teleop
	Endgame
	Switching Intake and Scoring Buttons
	Preload Button
	Fail Button
	Incap Duration Using Timestamps
	Navigation Between Auto, Teleop, and Endgame
	Undo and Redo

	Subjective Collection
	Subjective Collection Input
	Subjective Collection Screen
	Climb After
	Seconds Climbed At
	Quickness and Field Awareness

	Objective & Subjective
	Match Information Edit Screen
	The QR Schema Format

	Playoffs Scouting

	Pit Collection
	Datapoints Collected
	Robot Photos
	Naming Photos and JSON Files
	Starred Teams to Organize Multiple Scouts
	Highlighting to Show Scouting Progress
	Editing Event Key

	Stand Strategist
	Overview
	Changes from Last Year
	Navigation
	Entering Data
	Usage During Competition
	Match Selection
	Profile Management

	OverRate
	Overview
	Using the App
	Importing Data

	Viewer
	Navigation
	User Preferences​​​
	Match Schedule
	Match Details
	Team List
	Team Details
	Team Notes
	Data Graphs for Specific Datapoints
	Team Rankings
	Rankings for Specific Datapoints
	Stand Strategist Notes
	Last Four Matches
	Robot Images
	Auto Paths
	Field Map
	Pickability
	Picklist
	Elim Alliances
	Data Refreshing
	Groups

	Server
	Schema
	Calculations
	Team and TIM Data
	Auto Paths
	Pickability
	Expected Fields
	Predictions
	Scout Precision

	Interactions with TBA and Statbotics
	Testing and Code Standards
	Pulling Data from Devices
	Stand Strategist and Pit Data
	Exporting Data

	Grosbeak
	Picklist Editor
	Overview
	Team Rank Ordering
	Team Performance Comparison Graphs
	Removing Teams
	Updating Datapoints
	Operation
	
	Google Apps Script
	Robot Photos

	Video System
	Conclusion
	Season Recap
	Lessons Learned
	Training
	Documentation
	Data Plans

	Starting a Scouting System
	Future Steps

	Resources
	Old Whitepapers
	Fall Workshops
	2024 Public GitHub Repositories

	Appendices
	Subteam Structure
	How to Run a 1678 System Field Test
	Training
	Scout Training and Management
	SPR Calculation Walkthrough
	Picklist Editor Scripts
	Codebook
	Season Timeline
	Competition Roles
	Hardware

